Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail předmětu
FP-MA2_MAk. rok: 2022/2023
Je součástí teoretického základu oboru a navazuje na předmět Matematika I. Obsahem je hlavní část diferenciálního počtu a integrální počet funkce jedné proměnné, vybrané základní typy obyčejných diferenciálních rovnic a diferenciální počet funkce více proměnných.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Požadavky pro udělení zápočtu:
Absolvování kontrolních testů a dosažení alespoň 55 % bodů nebo absolvování souhrnné písemné práce a dosažení alespoň 55 % bodů. Udělení zápočtu je nutnou podmínkou pro konání zkoušky.
Požadavky ke zkoušce:
Zkouška má část písemnou a ústní, přičemž těžiště zkoušky tvoří část ústní.
U všech úloh písemné části musí být zapsán výpočet, nebo popsaný postup nebo musí být výsledek odůvodněn slovně. Příklady jsou rozděleny do tematických skupin. Nedosáhne-li student alespoň 50 % z celkového počtu dosažitelných bodů v každé tematické skupině příkladů, je písemná část i celá zkouška hodnocena stupněm "F" (nevyhovující) a student nepostupuje k ústní části.Nedosáhne-li student alespoň 55 % z celkového počtu dosažitelných bodů v písemné práci, je písemná část i celá zkouška hodnocena stupněm "F" (nevyhovující) a student nepostupuje k ústní části.Ústní část, zaměřená na znalost teorie, následuje po písemné části, slouží též k dořešení případných nejasností v písemné části.
Zakončení předmětu pro studenty s individuálním studiem:Absolvování souhrnného kontrolního testu a dosažení alespoň 55% bodů. Udělení zápočtu je nutnou podmínkou pro konání zkoušky.Zkouška má část písemnou a ústní, přičemž těžiště zkoušky tvoří část ústní.U všech úloh písemné části musí být zapsán výpočet, nebo popsaný postup nebo musí být výsledek odůvodněn slovně. Příklady jsou rozděleny do tematických skupin. Nedosáhne-li student alespoň 50 % z celkového počtu dosažitelných bodů v každé tematické skupině příkladů, je písemná část i celá zkouška hodnocena stupněm "F" (nevyhovující) a student nepostupuje k ústní části.Nedosáhne-li student alespoň 55 % z celkového počtu dosažitelných bodů v písemné práci, je písemná část i celá zkouška hodnocena stupněm "F" (nevyhovující) a student nepostupuje k ústní části.Ústní část, zaměřená na znalost teorie, následuje po písemné části, slouží též k dořešení případných nejasností v písemné části.
Osnovy výuky
Cílem je vybudovat matematický aparát nezbytný pro výklad navazujících odborných předmětů a zvládnout úvahy a výpočty v oblasti dané osnovou předmětu (i s ohledem na používání výpočetní techniky) včetně aplikací v informatice a ekonomických disciplínách.
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na cvičeních je kontrolována.
Základní literatura
Elearning
Zařazení předmětu ve studijních plánech
obor BAK-MIn , 1 ročník, letní semestr, povinný
Přednáška
Vyučující / Lektor
Osnova
Cvičení
1. Diferenciál a derivace vyšších řádů (diferenciál a jeho použití, derivace vyšších řádů, l´Hospitalovo pravidlo)2. Průběh funkce I (monotonie, lokální a absolutní extrémy funkce, konvexnost a konkávnost, asymptoty funkce) 3. Průběh funkce II ( úplný popis chování funkce) 4. Neurčitý integrál (smysl, vlastnosti, základní pravidla pro výpočet) 5. Metody integrace I (metoda per partes a substituční) 6. Metody integrace II (rozklad na parciální zlomky, integrace racionálních lomených funkcí)7. Určitý integrál (smysl, vlastnosti, pravidla pro výpočet)8. Aplikace určitého integrálu9. Funkce více proměnných a parciální derivace (graf a jeho řezy, parciální derivace, diferenciál)10. Extrémy funkcí více proměnných (parciální derivace vyšších řádů, extrémy lokální a na kompaktních množinách)11. Vázané extrémy funkcí více proměnných12. Diferenciální rovnice 1.řádu se separovanými proměnnými13. Lineární diferenciální rovnice 1.řádu