Detail předmětu
Praktikum z matematiky 1 – v ruštině
FP-pmrzPAk. rok: 2022/2023
Obsah tohoto praktika odpovídá předmětu Matematika 1 a dává studentům možnost se podrobněji seznámit s praktickým řešením konkretních úloh, procvičit si obtížnější partie a překonat obtíže pří zvládání učiva.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Nabízen zahraničním studentům
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Požadavky pro udělení zápočtu:
Absolvování kontrolních testů a dosažení alespoň 50 % bodů nebo absolvování souhrnné písemné práce a dosažení alespoň 50 % bodů.
Osnovy výuky
1. Základní matematické pojmy I
2. Základní matematické pojmy II
3. Matice (vlastnosti, operace s maticemi, výpočet hodnosti a inverzní matice)
4. Determinanty (vlastnosti, pravidla a výpočet determinantů)
5. Soustavy lineárních rovnic (řešitelnost, GEM a Cramerovo pravidlo)
6. Funkce jedné proměnné (základní charakteristiky funkcí, vlastnosti, racionální operace s funkcemi, složená, prostá, inverzní funkce)
7. Opakování (lineální algebra, základní vlastnosti funkcí)
8. Polynomy (kořeny polynomu a jejich určení, Hornerovo schéma)
9. Elementární funkce (vlastnosti, konstrukce a posuny grafů)
10. Limita a spojitost (vlastní a nevlastní limita ve vlastním a nevlastním bodě, základní vlastnosti a pravidla pro výpočet, spojitost v bodě a na intervalu, vlastnosti a pravidla pro počítání se spojitými funkcemi)
11. Posloupnosti (omezené a monotónní posloupnosti reálných čísel, limita posloupnosti)
12. Derivace 1.řádu (smysl, základní vlastnosti a pravidla, derivace elementárních funkcí)
13. Derivace 1.řádu elementárních funkcí
Učební cíle
Student bude schopen řešit matematické úlohy z probíraných témat a aplikovat matematické postupy při řešení konkrétních úloh v navazujících předmětech. Studenti budou seznámení s českou a anglickou odbornou terminologií.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na praktiku je kontrolována.
Základní literatura
MEZNÍK, I. Diskrétní matematika pro užitou informatiku, Brno 2013, CERM s.r.o., 185 s, ISBN: 978-80-214-4761- 5
MEZNÍK, I.: Matematika I, , 9. vydání, Brno 2011, FP VUT v Brně, 150s, ISBN 978-80-214-3725-8
MEZNÍK, I.: Matematika II., 11.vydání, Brno 2009, CERM s.r.o., 105s, ISBN 978-80-214-3816-3
Doporučená literatura
JACQUES, I.: Mathematics for economics and business. Second edition. Addison-Wesley, Wokingham 1994, 485s, ISBN 0-201-42769-9
MEZNÍK, I.- KARÁSEK, J.- MIKLÍČEK, J.: Matematika I pro strojní fakulty, 1. vydání, SNTL, Praha 1992, 502s, ISBN 80–03–00313-X
Zařazení předmětu ve studijních plánech
- Program BAK bakalářský
obor BAK-UAD-D , 1 ročník, zimní semestr, volitelný
obor BAK-EP , 1 ročník, zimní semestr, volitelný - Program BAK-EP bakalářský 1 ročník, zimní semestr, volitelný
- Program BAK-MIn bakalářský 1 ročník, zimní semestr, volitelný
- Program BAK-MIn-D bakalářský
obor BAK-MIn , 1 ročník, zimní semestr, volitelný
- Program BAK-PM bakalářský 1 ročník, zimní semestr, volitelný
- Program BAK-Z bakalářský
obor BAK-Z , 1 ročník, zimní semestr, volitelný
Typ (způsob) výuky
Cvičení
Vyučující / Lektor
Osnova
2. Matice a determinanty (operace s maticemi, vlastnosti a výpočet determinantů)
3. Soustavy lineárních rovnic (hodnost matice, Frobeniova věta , Gaussova eliminační metoda, Cramerovo pravidlo)
4. Funkce (určení definičního oboru funkce, její lichosti, sudosti, periodicity, omezenosti a monotonie, včetně důsledků v grafu funkce, vlastnosti a grafy elementární chfunkcí - mocnina, goniometrické a cyklometrické funkce, exponenciální a logaritmické funkce, obecná mocnina)
5. Operace s funkcemi (definiční obory, obory hodnot a grafy racionálních operací s funkcemi, složené, prosté a inverzní funkce, elementární konstrukce a posuny grafů)
6. Polynomy a racionální lomené funkce (výpočet nulových bodů – kořenů polynomu, rozklady polynomu s použitím Hornerova schématu, , rozklad ryze a neryze lomená racionální funkce na parciální zlomky)
7. Limita (výpočet a příp. odhad vlastní a nevlastní limity ve vlastním a nevlastním bodě s použitím pravidel pro výpočet limit, limit elementárních funkcí a základních limitních vzorců)
8. Spojitost (určení oborů spojitosti a příp. poruch spojitosti s využitím spojitosti elementárních funkcí a pravidel pro počítání se spojitými funkcemi)
9. Posloupnosti (určení základních vlastností posloupnosti reálných čísel -omezenost a monotonii, výpočet nebo odhad limity posloupnosti)
10. Derivace 1.řádu (výpočet derivace funkce s využitím obecných pravidel a vzorců derivací elementárních funkcí)
11. Derivace 1. a vyšších řádů (výpočet diferenciálu a jeho použití, výpočet derivace vyšších řádů, l´Hospitalovo pravidlo)
12. Průběh funkce I (určení intervalů monotonie, výpočet lokálních a absolutních extrémů funkce)
13. Průběh funkce II (určení intervalů konvexnosti , konkávnosti a inflexních bodů; výpočet asymptot funkce, úplný popis chování funkce včetně náčrtu jejího grafu)