Detail předmětu

MKP v inženýrských výpočtech

FSI-9MKPAk. rok: 2022/2023

Předmět seznamuje posluchače s Metodou konečných prvků v rozsahu, odpovídajícím pokročilé úrovni zasvěceného uživatele, schopného MKP samostatně tvůrčím způsobem používat. Jsou uvedeny souvislosti teoretických základů MKP s praktickou stránkou programové realizace algoritmu metody. Posluchači absolvují teoreticky a při řešení samostatných zadání též prakticky příklady využití MKP v oblastech mechaniky, souvisejících s tématem jejich disertace.

Jazyk výuky

čeština

Výsledky učení předmětu

Absolvent kurzu dokáže tvůrčím způsobem aplikovat poznatky z teorie Metody konečných prvků na řešení problémů spojených s tématem disertační práce, včetně samostatného programování vlastních procedur a maker, doplňujících základní uživatelskou nabídku komerčních systémů MKP.

Prerekvizity

Maticová symbolika, lineární algebra, funkce jedné a více proměnných, integrální a diferenciální počet, diferenciální rovnice, základy dynamiky, pružnosti, vedení tepla a proudění.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny.

Způsob a kritéria hodnocení

Závěrečné hodnocení je založeno na prokázání schopnosti aktivní práce s vybraným systémem MKP formou samostatného zpracování a prezentace zadaného semestrálního projektu.

Učební cíle

Cílem předmětu je získání schopností využívat Metodu konečných prvků na pokročilé úrovni, odpovídající požadavkům doktorského studia, včetně porozumnění algoritmu a procedurám využívaným při programování MKP. Absolvent získá praktické
dovedností zaměřené prioritně do oblasti jeho tématu doktorské práce, i všeobecný přehled
o možnostech nabízených komerčních programových systémů MKP.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Kontrola výuky probíhá individuálně podle postupu práce na semestrálním projektu.

Základní literatura

K.-J.Bathe: Finite Element Procedures, K.-J.Bathe, 2014 (EN)
 Zienkiewicz, O. C., Taylor, R. L., The Finite Element Method for Solid and Structural Mechanics, Elsevier, 2013 (EN)
Nonlinear Finite Elements for Continua and Structures: Nonlinear Finite Elements for Continua and Structures. J.Wiley, New York, 2000 (EN)

Doporučená literatura

J.Petruška: MKP v inženýrských výpočtech http://www.umt.fme.vutbr.cz/images/opory/MKP%20v%20inzenyrskych%20vypoctech/RIV.pdf
V.Kolář, I.Němec, V.Kanický: FEM principy a praxe metody konečných prvků, Computer Press, 2001
Z.Bittnar, J.Šejnoha: Numerické metody mechaniky 1, 2. Vydavatelství ČVUT, Praha, 1992

Elearning

Zařazení předmětu ve studijních plánech

  • Program D-APM-K doktorský 1 ročník, zimní semestr, doporučený kurs
  • Program D-APM-P doktorský 1 ročník, zimní semestr, doporučený kurs
  • Program D-ENE-K doktorský 1 ročník, zimní semestr, doporučený kurs
  • Program D-ENE-P doktorský 1 ročník, zimní semestr, doporučený kurs
  • Program D-IME-K doktorský 1 ročník, zimní semestr, doporučený kurs
  • Program D-IME-P doktorský 1 ročník, zimní semestr, doporučený kurs

Typ (způsob) výuky

 

Přednáška

20 hod., nepovinná

Vyučující / Lektor

Osnova

1.Úvod do teorie MKP, diskretizace, algoritmus
2.Algoritmus MKP - prvkové matice, sestavení globálních matic, struktura programu
3.Metody řešení velkých soustav rovnic
4.Základní typy prvků a jejich prvkové matice
5.Izoparametrická formulace prvků a základní typy prostorových prvků
6.Hermiteovské bázové funkce u tenkostěnných ohýbaných prvků
7.Uživatelské procedury a makra v systémech ANSYS a ABAQUS
8.Podmínky konvergence, kompatibilita, hierarchické a adaptivní algoritmy
9.MKP v úlohách dynamiky, vedení tepla, proudění, stacionární a nestacionární úlohy
10.Explicitní řešení nestacionárních problémů, nelinearity
11.Aplikace MKP v oblasti tématu disertační práce - konzultace, samostatná práce
12.Aplikace MKP v oblasti tématu disertační práce - konzultace, samostatná práce
13.Aplikace MKP v oblasti tématu disertační práce - konzultace, samostatná práce



Elearning