Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail předmětu
FSI-RMEAk. rok: 2023/2024
Definice variačních úloh, ukázky ekvivalence integrování diferenciální rovnice a hledání minima vhodného funkcionálu. Slabé řešení. Funkcionály a operátory v Hilbertově prostoru. Variační principy lineární pružnosti. Metoda vážených residuí a přímé variační metody pro řešení okrajových problémů. Metoda hraničních integrálních rovnic. Greenův tenzor. Somiglianovy vzorce. Fundamentální řešení. Metody numerického řešení hraničních integrálních rovnic. Stabilita pružných soustav, energetické kriterium stability, bifurkační a limitní body.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Pravidla hodnocení a ukončení předmětu
Učební cíle
Základní literatura
Doporučená literatura
Zařazení předmětu ve studijních plánech
specializace IME , 1 ročník, letní semestr, povinnýspecializace BIO , 1 ročník, letní semestr, povinný
Přednáška
Vyučující / Lektor
Osnova
Historický úvod. Definice variačních úloh, ukázky ekvivalence integrování diferenciální rovnice a hledání minima vhodného funkcionálu. Slabé řešení.
Funkcionály a operátory v Hilbertově prostoru. Lineární ohraničené operátory, symetrické a samoadjungované operátory. Kladné operátory a jejich fyzikální význam.
Energetický prostor kladně definitního operátoru. Hlavní a přirozené okrajové podmínky diferenciální rovnice. Zobecněné řešení úlohy o minimu energetického funkcionálu.
Variační principy lineární pružnosti. Základní vztahy, extrémy funkcionálů, klasické variační principy (Lagrangeův, Castiliglianův, Reisssnerův, Hu-Washizu).
Aplikace variačních principů pro odvození řídících rovnic vybraných zatížených těles.
Metoda vážených residuí a přímé variační metody pro řešení okrajových problémů mechaniky. Aproximace uvnitř oblasti a na hranici oblasti. Kolokační metoda, min-max metoda, metoda nejmenších čtverců, ortogonální metody. Treffzova hraniční metoda.
Metoda hraničních integrálních rovnic v lineární pružnosti. Bettiho věty o vzájemnosti prací. Fundamentální řešení pro Laplaceův operátor.
Greenův tenzor. Somiglianovy vzorce Fundamentální řešení pro rovnice elastostatiky. Sestrojení hraničních integrálních rovnic pro smíšenou úlohu elastostatiky.
Metody numerického řešení hraničních integrálních rovnic.
Fyzikální a matematické aspekty stabilitních úloh. Stabilita pružných soustav, energetické kriterium stability, bifurkační a limitní body. Úloha o vlastních číslech a její souvislost s úlohami o vlastních kmitech a stabilitě systému.
Nelineární systémy a kriterium stability. Termodynamické pojetí stability.
Časová rezerva
Cvičení