Detail předmětu
Matematická analýza II
FSI-SA2Ak. rok: 2023/2024
Předmět Matematická analýza II přímo navazuje na kurz Matematická analýza I. Jeho obsahem je diferenciální a integrální počet funkcí více reálných proměnných. Studenti v jeho průběhu získají teoretický aparát nezbytný k řešení složitějších úloh v matematice a technických disciplínách.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Pravidla hodnocení a ukončení předmětu
Zápočet: aktivní účast ve cvičeních, úspěšné absolvování dvou písemných prací (tj. získání alespoň poloviny z maximálního počtu bodů z každé z nich).
Zkouška: bude probíhat ústně (případně také písemně), kdy se student vyjádří ke třem (vylosovaným) okruhům z probrané látky.
Cvičení: povinná
Přednášky: doporučené
Učební cíle
Uplatnění metod diferenciálního a integrálního počtu více proměnných ve fyzikálních a technických úlohách.
Základní literatura
D. M. Bressoud: Second Year Calculus, Springer, 2001. (EN)
J. Stewart: Multivariable Calculus (8th ed.), Cengage Learning, 2015. (EN)
J. Škrášek, Z. Tichý: Základy aplikované matematiky I a II, SNTL Praha, 1989. (CS)
P. D. Lax, M. S. Terrel: Multivariable Calculus with Applications, Springer, 2017. (EN)
V. Jarník: Diferenciální počet II, Academia, 1984. (CS)
V. Jarník: Integrální počet II, Academia, 1984. (CS)
Doporučená literatura
Elearning
Zařazení předmětu ve studijních plánech
- Program B-MAI-P bakalářský 1 ročník, letní semestr, povinný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Úplné a kompaktní metrické prostory, zobrazení metrických prostorů;
3. Funkce více proměnných, limita a spojitost;
4. Parciální derivace, derivace ve směru, gradient;
5. Totální diferenciál, Taylorův polynom;
6. Lokální a globální extrémy;
7. Implicitní funkce, diferencovatelná zobrazení mezi prostory vyšších dimenzí;
8. Vázané extrémy, dvojný integrál;
9. Dvojný integrál na měřitelných množinách, trojný integrál;
10. Substituce ve dvojném a trojném integrálu, vybrané aplikace;
11. Křivky v rovině a prostoru, křivkové integrály, Greenova věta;
12. Nezávislost integrálu na integrační cestě a související pojmy, plochy v prostoru;
13. Plošné integrály, Gaussova-Ostrogradského věta a Stokesova věta.
Cvičení
Vyučující / Lektor
Osnova
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
Elearning