Detail předmětu
Numerické metody III
FSI-SN3-AAk. rok: 2023/2024
V předmětu Numerické metody III je představena metoda konečných prvků jako nástroj k přibližnému řešení diferenciálních rovnic. V kurzu jsou probírány matematické základy metody konečných prvků i implementace vybraných algoritmů.
Velká pozornost je věnována matematické podstatě metody, zejména slabé formulaci diferenciálních rovnic, Galerkinově metodě a analýze diskretizačních chyb. Ukázány jsou různé typy konečných prvků.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Diferenciální a integrální počet funkcí více proměnných. Základy funkcionální analýzy, parciální diferenciální rovnice. Numerické metody, zejména interpolace, integrace a řešení soustav ODR. Programování v prostředí MATLAB.
Pravidla hodnocení a ukončení předmětu
Podmínky pro udělení klasifikovaného zápočtu: aktivní účast ve cvičeních a zpracování zadaných projektů. Za výraznou aktivitu ve výuce lze hodnocení zvýšit.
Jestliže úspěšnost měříme v procentních bodech, pak je klasifikace provedena takto: 100--90: A (výborně), 89--80: B (velmi dobře), 79--70: C (dobře), 69--60: D (uspokojivě), 59--50: E (dostatečně), 49--0: F (nevyhovující).
Účast na přednáškách je žádoucí, účast ve cvičeních je povinná. Zmeškaná výuka může být nahrazena po dohodě se cvičícím.
Učební cíle
Cílem předmětu je seznámit studenty s matematickými základy metody konečných prvků a pochopení algoritmizace a standardních programátorských technik používaných při její implementaci.
V předmětu Numerické metody III studenti získají základní znalosti o metodě konečných prvků a její matematické podstatě a použijí tyto znalosti v několika samostatných projektech.
Základní literatura
Doporučená literatura
L. Čermák: Algoritmy metody konečných prvků, [on-line], available from: http://mathonline.fme.vutbr.cz/Numericke-metody-III/sc-1151-sr-1-a-142/default.aspx.
Zařazení předmětu ve studijních plánech
- Program N-MAI-A magisterský navazující 1 ročník, zimní semestr, povinný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
1. Klasická a variační formulace, triangulace, po částech lineární funkce.
2. Diskrétní variační formulace, elementární matice a vektory.
3. Elementární matice a vektory - pokračování.
4. Sestavení globální soustavy algebraických rovnic, její řešení, postprocessing.
5. Některé poznatky z funkcionální analýzy. Prostor W^k_2.
6. Stopy funkcí z prostoru W^k_2. Friedrichsova nerovnost a Poincareho nerovnost.
7. Bramble-Hilbertovo lemma. Sobolevova věta o vnoření.
8. Formální ekvivalence eliptického okrajového problému a příslušného
variačního problému. Existence a jednoznačnost řešení variačního problému.
9. Konečněprvkové prostory Lagrangeova typu. Definice přibližného řešení. Věta o existenci a jednoznačnosti přibližného řešení.
10. Transformace trojúhelníku na referenční trojúhelník. Vztahy mezi normami na obecném trojúhelníku a referenčním trojúhelníku.
11. Interpolační věta.
12. Numerická integrace.
13. Adaptivní techniky MKP.
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
1-2. Programovací nástroje, úvod.
3-4. Příprava na programování eliptické úlohy (stacionární vedení tepla).
5-6. Vývoj programu eliptické úlohy, výklad algoritmu parabolické úlohy (nestacionární vedení tepla).
7-8. Vývoj programu parabolické úlohy, výklad algoritmu hyperbolické úlohy (kmitání membrány).
9-10. Vývoj programu pro hyperbolickou úlohu, výklad algoritmu pro výpočet vlatních čísel.
11-12. Vývoj programu pro výpočet vlastních čísel.
13. Rezerva cvičícího.