Detail předmětu

Algoritmy umělé inteligence

FSI-VAIAk. rok: 2023/2024

Kurz seznamuje se základními přístupy k algoritmům umělé inteligence a klasickými metodami používanými v této oblasti. Důraz je kladen na automatické dokazování formulí, reprezentaci znalostí a řešení úloh. Použitelnost metod je demonstrována na řešení jednoduchých inženýrských problémů.

Jazyk výuky

čeština

Počet kreditů

4

Vstupní znalosti

Předpokládá se znalost algoritmizace, programování a základů matematické logiky a teorie pravděpodobnosti.

Pravidla hodnocení a ukončení předmětu

Požadavky pro udělení zápočtu: absolvování průběžných testů a předložení funkčního softwarového projektu, který používá některou z probíraných metod UI. Celkem může student získat 40 bodů za cvičení (20 za testy a 20 za projekt) a 60 bodů za zkoušku, celkem tedy max. 100 bodů. Hodnocení probíhá dle ECTS, tj. pro úspěšné absolvování musí student v každé části získat alespoň polovinu bodů (20 a 30).
Účast na přednáškách je žádoucí, na cvičeních povinná. Výuka běží podle týdenních plánů. Způsob nahrazení zameškaných cvičení je plně v kompetenci vyučujícího.

Učební cíle

Cílem kurzu je seznámit studenty se základními prostředky umělé inteligence, s možnostmi a přiměřeností jejich použití při řešení inženýrských úloh.
Pochopení základních metod umělé inteligence a schopnost jejich implementace.

Základní literatura

Bratko, I. Prolog Programming for Artificial Intelligence. Pearson Education Canada 2011. (EN)
Luger, G.F. Artificial Intelligence. Structures and Strategies for Complex Problem Solving. Addison-Wesley 2008. (EN)
Negnevitsky, M. Artificial Intelligence. A Guide to Intelligent Systems. Pearson Education 2011. (EN)
Russel, S. and Norvig, P. Artificial Intelligence: A Modern Approach, Global Edition. Pearson Education 2021. (EN)

Doporučená literatura

Mařík, V. a kol. Umělá inteligence 1 - 6. Praha, Academia. (CS)
Poole, D.L. and Mackworth, A.K. Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press 2023. https://artint.info/3e/html/ArtInt3e.html (EN)

Elearning

Zařazení předmětu ve studijních plánech

  • Program N-AIŘ-P magisterský navazující 1 ročník, letní semestr, povinný
  • Program N-MAI-P magisterský navazující 1 ročník, letní semestr, povinně volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Úvod do umělé inteligence.
2. Stavový prostor, neinformované prohledávání.
3. Informované prohledávání stavového prostoru.
4. Řešení problémů rozkladem na podproblémy, metody prohledávání AND/OR grafu.
5. Metody hraní her.
6. Úlohy se splňováním omezení.
7. Predikátová logika a rezoluční metoda.
8. Hornova logika a logické programování.
9. Netradiční logiky.
10. Reprezentace znalostí.
11. Reprezentace a zpracování neurčitosti.
12. Bayesovské a rozhodovací sítě.
13. Markovské rozhodovací procesy.

Cvičení s počítačovou podporou

26 hod., povinná

Vyučující / Lektor

Osnova

1. Úvodní motivační příklady.
2. Metody neinformovaného prohledávání stavového prostoru.
3. Metody informovaného prohledávání stavového prostoru.
4. Algoritmus A* a jeho modifikace.
5. Metody prohledávání AND/OR grafu.
6. Úlohy se splňováním omezení.
7. Metody hraní her.
8. Predikátová logika a rezoluční metoda.
9. Logické programování a jazyk Prolog.
10. Řešení úloh UI v Prologu.
11. Produkční a expertní systémy.
12. Bayesovské sítě.
13. Obhájení semestrálních prací.

Elearning