Detail předmětu

Neuronové sítě a strojové učení

FSI-VSCAk. rok: 2023/2024

Kurz seznamuje se základními přístupy strojového učení, resp. hlubokého učení a klasickými metodami používanými v této oblasti. Použitelnost metod je demonstrována na řešení jednoduchých inženýrských problémů.

Jazyk výuky

čeština

Počet kreditů

5

Vstupní znalosti

Předpokládá se znalost základních souvislostí ze statistiky, optimalizace, teorie grafů a programování.

Pravidla hodnocení a ukončení předmětu

Požadavky pro udělení zápočtu: předložení funkčního softwarového projektu, který používá některou z probíraných implementací metod UI. Konkrétní specifikace probíhá na prvním cvičení. Kontrola postupu realizace projektu a konzultace jsou prováděny průběžně. Dále absolvování jednoho testu a splnění všech samostatných úkolů, které jsou průběžně zadávány. Celkem může student získat 40 bodů za cvičení (20 za projekt a 20 za test) a 60 bodů za zkoušku, celkem tedy max. 100 bodů. Hodnocení probíhá dle ECTS, tj. pro úspěšné absolvování musí student v každé části získat alespoň polovinu bodů (20 a 30).
Účast na přednáškách je žádoucí, na cvičeních povinná. Výuka běží podle týdenních plánů. Způsob nahrazení zameškaných cvičení je plně v kompetenci vyučujícího.

Učební cíle

Cílem kurzu je seznámit studenty se základním prostředky neuronových sítí, s možnostmi a přiměřeností jejich použití při řešení inženýrských úloh.

Pochopení základních metod umělých neuronových sítí a schopnost jejich implementace.

Základní literatura

Sima,J., Neruda,R.: Theoretical questions of neural networks, MATFYZPRESS, 1996, ISBN 80-85863-18-9 (CS)

Doporučená literatura

B. Kosko: Neural Networks and fuzzy systems. Prentice Hall 1992 (EN)
Bishop, C. M.: Pattern Recognition, Springer Science + Business Media, LLC, 2006, ISBN 0-387-31073-8. (EN)

Elearning

Zařazení předmětu ve studijních plánech

  • Program N-AIŘ-P magisterský navazující 1 ročník, letní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Úvod do strojového učení a umělých neuronových sítí v kontextu umělé inteligence. Poznámky k biologické neuronové síti.
2. Architektury a klasifikace neuronových sítí. Perceptron.
3. Dopředné neuronové sítě, jedno a vícevrstvé sítě. ADALINE. Algoritmus Back Propagation. Optimalizační metody užité při návrhu ANN.
4. Neuronové sítě typu RBF a RCE. Topologicky organizované neuronové sítě (soutěživé učení, Kohonenovy mapy).
5. Metody shlukové analýzy. Redukce dimenze úlohy. Analýza hlavních komponent. Neuronové sítě typu LVQ, neuronové sítě ART.
6. Asociativní neuronové sítě (Hopfieldova, BAM), chování, stavový diagram, atraktory, učení.
7. Deep Neural Network. Konvoluční sítě (CNN). Deep Dream. Transfer Learning.
8. Deep Neural Network. R-CNN. Autoenkodéry.
8. Deep Neural Network. Klasifikace obrazových dat, rozpoznávání objektů na snímcích.
9. Deep Neural Network. Sémantická segmentace objektů na snímku.
10. Spiking neural Network.

Cvičení s počítačovou podporou

26 hod., povinná

Vyučující / Lektor

Osnova

Počítačové cvičení bude korespondovat s osnovou přednášek v předešlém týdnu. Témata k řešení:
- implementace základních metaheuristik
- řešení problémů globální optimalizace
- využití global optimisation toolboxu
- využití deep neural network toolboxu
- tvorba nelineárních modelů s využitím neuronových sítí
- deep learning v počítačovém vidění pro klasifikaci obrazu
- detekce objektů v obraze s využitím Deep Learningu (R-CNN)
- sémantická segmentace obrazu s využitím Deep Learningu (SegNet)
- validace učení CNN a kontrola naučených sítí pomocí metody deep dream

Elearning