Detail předmětu

Aplikovaná harmonická analýza

FSI-9AHAAk. rok: 2023/2024

Obecná teorie generujících systémů v Hilbertových prostorech: ortonormální báze (ONB), Rieszovy báze (RB), frejmy (angl frames) a reprodukční jádra.
Související operátory (rekonstrukční, diskretizační aj.). Vlastnosti a charakterizační věty. Kanonická dualita. Užitečné konstrukce a algoritmy založené na užití teorie pseudoinverzních operátorů. Speciální frejmy (Gabor, wavelet) a jejich aplikace.

Jazyk výuky

čeština

Zajišťuje ústav

Vstupní znalosti

Lineární algebra, diferenciální a integrální počet, lineární funkcionální analýza.

Pravidla hodnocení a ukončení předmětu

Seminární referáty nebo ústní zkouška.
Při nepřítomnosti nutnost doplnit probíranou látku samostudiem případně domácími úkoly.

Učební cíle

Seznámit posluchače doktorského studia s posledními výsledky moderní harmonické analýzy a možnostmi jejich využití při řešení praktických úloh funkcionálního modelování v abstraktních prostorech, zejména l^2(J) (prostory diskrétních signálů včetně obrazů), L^2(R) (prostory analogových signálů) a L^2(Omega;A;P) (stochastické lineární modely časových řad). Pozornost bude také věnována problematice hledání numericky stabilních řídkých řešení v modelech s velkým množstvím parametrů.
Získání základů z moderní teorie harmonické analýzy. Osvojení dovedností, které umožní studentům doktorského studia efektivní využití těchto přístupů při modelování a výzkumu reálných systémů s využitím výpočetní techniky.

Základní literatura

A. Teolis: Computational Signal processing with wavelets. Birkhäuser 1998 (EN)
Ch.Heil: A Basis Theory Primer, expanded edition, Birkhäuser, New York, 2011 (EN)
O. Christensen: An Introduction to Frames and Riesz bases. Birkhäuser 2003 (EN)
V. Veselý a P. Rajmic. Funkcionálnı́ analýza s aplikacemi ve zpracovánı́ signálů, Odborná učebnice (4.vyd.). Vysoké učenı́ technické v Brně, Brno (CZ), 2019. ISBN 978-80-214-5186-5. (CS)

Doporučená literatura

G.G. Walter: Wavelets and other orthogonal systems with Applications, CRC Press, Boca Raton, Florida, 1994. (EN)
H. G. Feichtinger (ed.) and T. Strohmer (ed.), Gabor analysis and algorithms. Theory and applications, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston-Basel-Berlin, 1998 (EN)
Ch. K. Chui: An Introduction to wavelets, Wavelet Analysis and Its Applications, vol. 1, Academic Press, Inc., San Diego, CA, 1992. (EN)
I. Daubechies: Ten Lectures on Wavelets, Ingrid Daubechies, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, SIAM, Philadelphia, Pennsylvania, 1992. (EN)
S.S. Chen, D.L. Donoho and M. Saunders: Atomic Decomposition by Basis Pursuit, SIAM J. Sci. Comput. 20 (1998), no. 1, 33–61, reprinted in SIAM Review, 43 (2001), no. 1, pp. 129–159. (EN)
Y. Meyer: Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. (EN)

Zařazení předmětu ve studijních plánech

  • Program D-APM-P doktorský 1 ročník, letní semestr, doporučený kurs
  • Program D-APM-K doktorský 1 ročník, letní semestr, doporučený kurs

Typ (způsob) výuky

 

Přednáška

20 hod., nepovinná

Vyučující / Lektor

Osnova

Volitená témata dle zaměření doktorského studia studentů:
1. Pseudoinverzní operátory v Hilbertových prostorech
2. Přechod od ortonormálních bází (ONB) k Rieszovým bázím (RB) a frejmům
3. Diskretizační, rekonstrukční, korelační a frejmový operátor
4. Charakterizace ONB, RB a frejmů. Princip duality
5. Hilbertovy prostory s reprodukčním jádrem
6. Vybrané algoritmy řešení inverzních úloh, problém numerické nestability při přeparametrizování (overcomplete frames)
7. Některé speciální prostory a jejich vlastnosti
8. Některé speciální operátory a jejich vlastnosti
9. Gaborovy frejmy
10. Waveletové frejmy
11. Analýza víceúrovňového rozlišení (angl. Multiresolution analysis)
12. Rezerva
Seminář: formou referátů studentů k tématům přidělených k samostudiu pokud možno ve vazbě na téma dizertační práce