Detail předmětu
Matematika 3
FEKT-BPC-MA3AAk. rok: 2023/2024
Obsahem předmětu jsou základy dvou matematických disciplín: pravděpodobnosti a numerických metod.
Po seznámení se základními pojmy je v pravděpodobnosti hlavní pozornost zaměřena na náhodné veličiny diskrétního a spojitého typu. Závěr kurzu pravděpodobnosti je věnován testování statistických hypotéz.
V části numerické metody se probírá řešení nelineárních rovnic a soustav lineárních rovnic, aproximace funkcí pomocí interpolačního polynomu, splajnu a metodou nejmenších čtverců, numerické derivování a integrování a nakonec numerické řešení diferenciálních rovnic.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Z předmětů Matematika 1 a Matematika 2 jsou požadovány základní znalosti diferenciálního počtu funkce jedné proměnné a více proměnných a integrálního počtu funkce jedné proměnné. Především by student měl umět kreslit grafy elementárních funkcí, dosadit do funkce, derivovat (včetně parciálních derivací) a integrovat.
Pravidla hodnocení a ukončení předmětu
Informace k testu, projektu a zkoušce:
Test budeme psát prezenčně na přednášce v některém prosincovém týdnu. Zahrnovat bude látku, která byla do té doby probrána. Povolené pomůcky: kalkulačka, nejvýše 3 listy A4 vlastních poznámek.
Projekt bude řešen samostatně a jeho výsledky zadány online v prostředí Maple T.A.. Zadání bude zveřejněno někdy po polovině semestru, termín vypracování bude poslední týden semestru. Přístupové údaje do systému dostanete, až to bude potřeba. Každému studentovi se vygeneruje vlastní zadání, které v prostředí Maple T.A. sám odevzdá. Práce s Maple T.A. je jednoduchá a intutivní, takže se bez dalšího rozptylování budete moci soustředit na svou práci. Hodnocení provádí podle přednastavených pravidel sám software. Dbejte na dodržování formálních pravidel zápisu výsledků.
Povolené pomůcky ke zkoušce: kalkulačka, nejvýše 3 listy A4 vlastních poznámek.
Přednášky nejsou povinné, cvičení jsou povinná. V přpadě nařízené karantény se postupuje podle fakultních předpisů.
Učební cíle
Studenti by po absolvování kursu měli být schopni z oblasti pravděpodobnosti a statistiky:
- vypočítat základní charakteristiky statistického souboru (aritmetický průměr, medián, modus, rozptyl, směrodatná odchylka)
- pro konkrétní zadání vybrat správný model (klasická, diskrétní, geometrická pravděpodobnost) a vypočítat pravděpodobnost zadaného jevu
- vypočítat podmíněnou pravděpodobnost jevu za dané podmínky
- rozeznat a využít nezávislost jevů při výpočtu pravděpodobnosti
- aplikovat větu o úplné pravděpodobnosti a Bayesův vzorec
- pracovat s pravděpodobnostní funkcí (u diskrétní náhodné veličiny) a hustotou (u spojité náhodné veličiny) a s distribuční funkcí, určit jednu na základě znalosti druhé
- u jednoduchých příkladů sestavit pravděpodobnostní funkci
- u modelových situací vybrat správný typ pravděpodobnostního rozdělení (binomické, hypergeometrické, exponenciální, apod.) a dále s ním pracovat
- vypočítat střední hodnotu, rozptyl a směrodatnou odchylku náhodné veličiny a vysvětlit jejich význam
- provádět výpočty s náhodnou veličinou X s normálním rozdělením - určit pravděpodobnost, že je X v daném rozmezí, najít kvantil/y pro zadanou pravděpodobnost
- aproximovat binomické rozdělení pomocí normálního rozdělení
- provést některé jednoduché statistické testy: U-test, test o střední hodnotě při známém rozptylu, test o parametru p binomického rozdělení
Z oblasti numerických metod by absolvent předmětu měl umět:
- najít kořen rovnice f(x)=0 metodou půlení intervalů, Newtonovou metodou, metodou prosté iterace, popsat tyto metody včetně podmínek konvergence
- najít kořen soustavy dvou nelineárních rovnic Newtonovou metodou a metodou prosté iterace
- řešit soustavu lineárních rovnic Gaussovou eliminací s výběrem hlavního prvku, Jacobiho a Gauss-Seidelovou iterační metodou a diskutovat výhody a nevýhody těchto metod
- sestavit pro zadané body Lagrangeův nebo Newtonův interpolační polynom a počítat pomocí něj přibližné hodnoty aproximované funkce, případně i její derivace
- aproximovat funkci pomocí splajnu (lineárního nebo kubického)
- funkci zadanou tabulkou bodů aproximovat metodou nejmenších čtverců pomocí přímky, případně paraboly nebo exponenciály
- rozhodnout, zda je vhodnější použít interpolační polynom, splajn, metodu nejmenších čtverců
- vypočítat přibližnou hodnotu 1. nebo 2. derivace zadané funkce v zadaném bodě
- vypočítat přibližnou hodnotu určitého integrálu lichoběžníkovou a Simpsonovou metodou, popsat princip těchto metod, porovnat je z hlediska přesnosti
- najít přibližné řešení diferenciální rovnice na zadaném intervalu Eulerovou metodou, 1. a 2. modifikací Eulerovy metody a metodami Runge-Kutta vyšších řádů
Základní literatura
Doporučená literatura
Novák, M., Matematika 3 - Sbírka příkladů z numerických metod. Elektronický text FEKT VUT, Brno, 2015 (CS)
Elearning
Zařazení předmětu ve studijních plánech
- Program BPC-BTB bakalářský 2 ročník, zimní semestr, povinný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
1. Úvod do numerické matematiky. Soustavy lineárních rovnic.
2. Numerické řešení nelineárních rovnic.
3. Soustavy nelineárních rovnic.
4. Interpolační polynom. Splajn.
5. Metoda nejmenších čtverců. Numerické derivování a integrování.
6. Numerické řešení diferenciálních rovnic.
7. Úvod do teorie pravděpodobnosti.
8. Náhodná veličina a její číselné charakteristiky.
9. Významná diskrétní rozdělení pravděpodobnosti.
10. Významná spojitá rozdělení pravděpodobnosti.
11. Normální rozdělení. Zákon velkých čísel. Centrální limitní věta.
12. Statistické testy.
13. Opakování, konzultace ke zkoušce.
Cvičení odborného základu
Vyučující / Lektor
Osnova
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
Projekt
Vyučující / Lektor
Osnova
Elearning