Detail předmětu

Matematika II

FAST-DA02Ak. rok: 2023/2024

Numerické metody pro řešení počátečních úloh pro jednu obyčejnou diferenciální rovnici prvního řádu a pro systémy obyčejných diferenciálních rovnic prvního řádu, absolutní stabilita, variační formulace okrajových úloh pro obyčejné i parciální diferenciální rovnice druhého řádu, diskretizace eliptických úloh metodou sítí a metodou konečných prvků, numerické metody řešení nestacionárních úloh parabolického a hyperbolického typu, příklad numerického řešení úlohy pro nelineární diferenciální rovnici.

Jazyk výuky

čeština

Zajišťuje ústav

Ústav matematiky a deskriptivní geometrie (MAT)

Vstupní znalosti

Diferenciální a integrální počet fukcí více proměnných, interpolace a aproximace funkce, numerické derivování a integrace, numerická lineární algebra

Pravidla hodnocení a ukončení předmětu

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Učební cíle

Seznámit studenty se základy teorie numerického řešení obyčejných diferenciálních rovnic a systémů těchto rovnic a parciálních diferenciálních rovnic druhého řádu. Naučit je používat numerické metody pro řešení takovýchto rovnic.

Základní literatura

Dalík Josef: Numerické metody. Akademické nakladatelství CERM, s.r.o. Brno 1997

Doporučená literatura

Čermák L.: Numerické metody II. Akademické nakladatelství CERM, s.r.o. Brno 2004
Marčuk G.I.: Metody numerické matematiky. Academia 1987
Míka S., Přikryl P.: Numerické metody řešení obyčejných diferenciálních rovnic. ZČU Plzeň 1994
Míka S., Přikryl P.: Numerické metody řešení parciálních diferenciálních rovnic. ZČU Plzeň 1995
Vitásek E.: Základy teorie numerických metod pro řešení diferenciálních rovnic. Academia Praha 1994
Ženíšek A.: Matematické základy metody konečných prvků. PC-DIR Brno 1997

Zařazení předmětu ve studijních plánech

  • Program D-K-C-GK doktorský

    obor GAK , 2 ročník, zimní semestr, povinně volitelný

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Vyučující / Lektor

Osnova

1. Formulace počáteční úlohy pro oyčejné diferenciální rovnice 1. řádu, základní vlastnosti, existence a jednoznačnost řešení. 2. Základní munerické metody pro počáteční úlohy a jejich absolutní stabilita. 3. Úvod do variačního počtu, základní poznatky o funkčních prostorech. 4. Klasická a variační formulace eliptické úlohy pro obyčejné diferenciální rovnice 2. řádu, základní fyzikální významy. 5. Standardní metoda sítí pro eliptické úlohy pro obyčejné diferenciální rovnice (ODR) 2. řádu a její stabilní modifikace. 6. Aproximace okrajových úloh pro ODR 2. řádu metodou konečných prvků. 7. Klasická a variační formulace eliptické úlohy pro ODR 4. řádu a aproximace jejich řešení metodou konečných prvků. 8. Klasická a variační formulace eliptické úlohy pro parciální diferenciální rovnice 2. řádu. 9. Metoda konečných prvků pro variační eliptické úlohy pro parciální diferenciální rovnice 2. řádu. 10. Metoda konečných objemů 11. Diskretizace nestacionárních úloh pro diferenciální rovnice 2. řádu metodou přímek. 12. Matematické modely proudění. Nelineární úlohy a úlohy s převládající konvekcí, jejich klasická a variační formulace. 13. Numerické metody řešení modelů proudění.