Detail předmětu

Constitutive Equations for IME

FSI-RKI-AAk. rok: 2024/2025

Předmět podává ucelený přehled konstitutivních závislostí a konstitutivních modelů látek a vymezuje tyto pojmy nejen pro konstrukční materiály, ale i pro látky kapalné a plynné. Zabývá se také časovou závislostí deformačně-napěťové odezvy materiálů a popisuje ji pomocí různých viskoelastických modelů. Využívá teorii konečných deformací kontinua pro popis nelineárně elastického i neelastického chování elastomerů a kompozitů s elastomerovou matricí a plastického chování kovů včetně jejich tvárného lomu. Uvádí specifické způsoby zkoušení materiálů potřebné pro identifikaci jejich modelů. Pro každý z uváděných modelů materiálu jsou formulovány základní konstitutivní rovnice, z nichž se pak odvozuje odezva materiálu při zatížení, a to jak analytickými metodami, tak pomocí MKP, včetně praktické aplikace v programu ANSYS.

Jazyk výuky

angličtina

Počet kreditů

6

Nabízen zahraničním studentům

Všech fakult

Vstupní znalosti

U studentů se předpokládá znalost základních pojmů pružnosti a pevnosti (napětí, deformace, obecný Hookeův zákon), jakož i některé základní pojmy hydromechaniky (ideální, Newtonská, nenewtonská kapalina) a termodynamiky (stavová rovnice plynů, termodynamická rovnováha). Dále jsou potřebné základy MKP a elementární znalosti práce se systémem ANSYS.

Pravidla hodnocení a ukončení předmětu

Pro udělení zápočtu je potřebná aktivní účast na cvičeních a zpracování individuální semestrální práce. Zkouška probíhá formou písemného testu základních znalostí a obhajoby samostatné individuální semestrální práce.
Účast na cvičení je povinná. Omluvená neúčast se nahrazuje samostatným vypracováním úloh podle pokynů vyučujícího.

Učební cíle

Cílem předmětu je podat ucelený přehled konstitutivních závislostí různých typů látek, propojit přitom znalosti, získané v různých oborech (mechanika těles, hydromechanika, termodynamika) a současně si prakticky osvojit (v MKP programu ANSYS) některé konstitutivní modely vhodné pro použití u moderních konstrukčních materiálů (např. elastomery, plasty, kompozity s elastomerovou matricí, kovy nad mezí kluzu).
Studenti získají přehled o mechanických vlastnostech a chování látek a možnostech jejich matematického popisu a modelování, především v oblasti velkých deformací a časově závislého chování. Získají teoretické znalosti nutné pro jejich sofistikované využívání v konstrukci strojů a zařízení. V rámci možností používaných programů MKP se také naučí prakticky používat některé ze složitějších konstitutivních modelů (hyperelastické i neelastické, izotropní i anizotropní) v deformačně-napěťové analýze.

Základní literatura

Články v odborných časopisech
Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, 2001.
Lemaitre J., Chaboche J.-L.: Mechanics of Solid Materials. Cambridge University Press, 1994.

Doporučená literatura

Němec I. a kol. Nelineární mechanika. VUTIUM, Brno, 2018

Elearning

Zařazení předmětu ve studijních plánech

  • Program N-IMB-P magisterský navazující

    specializace IME , 2 ročník, zimní semestr, povinný

  • Program N-ENG-Z magisterský navazující 1 ročník, zimní semestr, doporučený kurs

  • Program C-AKR-P celoživotní vzdělávání v akr. stud. programu

    specializace CZS , 1 ročník, zimní semestr, volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

  1. Vymezení a přehled konstitutivních modelů v mechanice, konstitutivní modely pro jednotlivá skupenství hmoty, definice tenzorů deformace.
  2. Tenzory napětí a přetvoření při konečných deformacích. Hyperelasticita, model neo-Hooke.
  3. Mechanické zkoušky elastomerů, polynomické hyperelastické modely, predikční schopnost.
  4. Modely Ogden, Arruda-Boyce – entropická elasticita.
  5. Inkrementální modul pružnosti. Modely pěnových elastomerů. Anizotropní hyperelasticita, pseudoinvarianty.
  6. Neelastické efekty elastomerů (Mullins), podmínky plasticity.
  7. Modely plastického tečení, součinitel triaxiality napětí, Lodeho parametr.
  8. Modely plastického porušení.
  9. Slitiny s tvarovou pamětí a jejich konstitutivní modely.
  10. Úvod do teorie lineární viskoelasticity.
  11. Modely lineární viskoelasticity - odezva na statické zatěžování.
  12. Modely lineární viskoelasticity - odezva na dynamické zatěžování. Komplexní modul pružnosti.
  13. Viskohyperelasticita – polární dekompozice, model Bergstrom-Boyce.

Cvičení s počítačovou podporou

13 hod., povinná

Vyučující / Lektor

Osnova

  1. Experiment – zkoušení elastomerů

2.-3. MKP simulace zkoušek elastomerů

4.-5. Identifikace konstitutivních modelů elastomerů

6.-7. Modely plasticity

8.-9. Modely anizotropního chování elastomerů

10. Modelování Mullinsova efektu

11.-12. Simulace viskoelastického chování

13. Formulace semestrálního projektu, zápočet

Elearning