Detail předmětu

Pokročilé metody matematické analýzy

FSI-SDR-AAk. rok: 2024/2025

Předmět podává přehled moderních metod řešení diferenciálních rovnic založených na funkcionální analýze. Předmet se zabývá následujícími okruhy: Přehled prostorů funkcí s integrovatelnými derivacemi.
Lineární eliptické rovnice: slabá a variační formulace okrajových úloh, existence a jednoznačnost řešení, přibližná řešení a jejich konvergence.
Specifika nelineárních úloh. Slabá a variační formulace nelineárních stacionárních koercivních úloh, existence řešení. Aplikace na vybrané rovnice matematické fyziky.
Úvod do stochastických diferenciálních rovnic.

Jazyk výuky

angličtina

Počet kreditů

5

Zajišťuje ústav

Vstupní znalosti

Diferenciální a integrální počet funkcí jedné a více reálných proměnných,
obyčejné a parciální diferenciální rovnice, funkcionální analýza a prostory funkcí, teorie pravděpodobnosti.

Pravidla hodnocení a ukončení předmětu

Zápočet: aktivní účast ve výuce.
Zkouška - praktická část testuje schopnost vzájemně převádět slabou, variační a klasickou formulaci konkrétní nelineární okrajové úlohy a analyzovat její zobecněné řešení. Teoretická část obsahuje 4 otázky z přednesené látky.
Pří nepřítomnosti si student musí doplnit zameškanou látku samostudiem.

Učební cíle

Cílem kurzu je podat posluchačům přehled moderních metod řešení okrajových úloh pro diferenciální rovnice založených na prostorech funkcí a funkcionální analýzy včetně konstrukce přibližných řešení.
Studenti získají orientaci v zobecněných formulacích (slabých a variačních) úloh pro parciální i obyčejné diferenciální rovnice a konstrukci přibližných řešení používaných pro numerické výpočty.
Získají také představu o stochastickém integrálu a stochastických diferenciálních rovnicích.

Zařazení předmětu ve studijních plánech

  • Program N-AIM-A magisterský navazující 2 ročník, letní semestr, povinný
  • Program N-MAI-A magisterský navazující 2 ročník, letní semestr, povinný

  • Program C-AKR-P celoživotní vzdělávání v akr. stud. programu

    specializace CLS , 1 ročník, letní semestr, volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., povinná

Vyučující / Lektor

Osnova

1. Motivace. Přehled vybraných prostředků funkcionální analýzy.
2. Lebesgueovy prostory, zobecněné funkce, popis hranice oblasti.
3. Sobolevovy prostory, různá zavedení, věty o vnoření a o stopách, duální prostory.
4. Slabá formulace lineárních eliptických rovnic.
5. Laxovo-Milgramovo lemma a existence a jednoznačnost řešení.
6. Variační formulace, konstrukce přibližných řešení.
7. Specifika nelineárních úloh, různé nelinearity. Němyckého operátory.
8. Slabá a variační formulace stacionárních nelineárních rovnic.
9. Monotónní operátory a jejich použití.
10. Aplikace metod na vybrané rovnice matematické fyziky.
11. Úvod do stochastických diferenciánlních rovnic. Brownův pohyb.
12. Itoův integrál a Itoova formule. Řešení stochastických diferenciálních rovnic.
13. Rezerva.

Cvičení

26 hod., povinná

Vyučující / Lektor

Osnova

Ilustrace pojmů na příkladech a použití vět a teoretických výsledků z přednášek
v konkrétních situacích a na vybraných rovnicích matematické fyziky.