Detail předmětu
Pokročilé metody matematické analýzy
FSI-SDR-AAk. rok: 2024/2025
Předmět podává přehled moderních metod řešení diferenciálních rovnic založených na funkcionální analýze. Předmet se zabývá následujícími okruhy: Přehled prostorů funkcí s integrovatelnými derivacemi.
Lineární eliptické rovnice: slabá a variační formulace okrajových úloh, existence a jednoznačnost řešení, přibližná řešení a jejich konvergence.
Specifika nelineárních úloh. Slabá a variační formulace nelineárních stacionárních koercivních úloh, existence řešení. Aplikace na vybrané rovnice matematické fyziky.
Úvod do stochastických diferenciálních rovnic.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
obyčejné a parciální diferenciální rovnice, funkcionální analýza a prostory funkcí, teorie pravděpodobnosti.
Pravidla hodnocení a ukončení předmětu
Zkouška - praktická část testuje schopnost vzájemně převádět slabou, variační a klasickou formulaci konkrétní nelineární okrajové úlohy a analyzovat její zobecněné řešení. Teoretická část obsahuje 4 otázky z přednesené látky.
Pří nepřítomnosti si student musí doplnit zameškanou látku samostudiem.
Učební cíle
Studenti získají orientaci v zobecněných formulacích (slabých a variačních) úloh pro parciální i obyčejné diferenciální rovnice a konstrukci přibližných řešení používaných pro numerické výpočty.
Získají také představu o stochastickém integrálu a stochastických diferenciálních rovnicích.
Elearning
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Lebesgueovy prostory, zobecněné funkce, popis hranice oblasti.
3. Sobolevovy prostory, různá zavedení, věty o vnoření a o stopách, duální prostory.
4. Slabá formulace lineárních eliptických rovnic.
5. Laxovo-Milgramovo lemma a existence a jednoznačnost řešení.
6. Variační formulace, konstrukce přibližných řešení.
7. Specifika nelineárních úloh, různé nelinearity. Němyckého operátory.
8. Slabá a variační formulace stacionárních nelineárních rovnic.
9. Monotónní operátory a jejich použití.
10. Aplikace metod na vybrané rovnice matematické fyziky.
11. Úvod do stochastických diferenciánlních rovnic. Brownův pohyb.
12. Itoův integrál a Itoova formule. Řešení stochastických diferenciálních rovnic.
13. Rezerva.
Cvičení
Vyučující / Lektor
Osnova
v konkrétních situacích a na vybraných rovnicích matematické fyziky.
Elearning