Detail předmětu
Vybrané kapitoly z matematiky II
FSI-T2KAk. rok: 2024/2025
Kurz obsahuje základy analýzy funkcí komplexní proměnné. Kurz se zabývá především elementárními funkcemi v komplexním oboru, derivací v komplexním oboru, problematikou holomorfních funkcí, konformním zobrazením, integrací funkcí komplexní proměnné a teorií reziduí.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Pravidla hodnocení a ukončení předmětu
Zápočet dle testu
Zkouška písemná i ústní
Nahrazení zameškané výuky je možné absolvováním testu.
Učební cíle
Cílem kurzu je rozšířit znalosti získané v základním kurzu matematiky do oblasti funkcí komplexní proměnné za maximálního využití znalostí z analýzy v reálném oboru.
Základy analýzy v komplexním oboru
Základní literatura
Druckmüller, M., Ženíšek, A.: Funkce komplexní proměnné, PC-Dir Real, Brno 2000
Šulista, M.: Základy analýzy v komplexním oboru, Stát.nakl.techn.lit., Praha 1981
Doporučená literatura
Druckmüller, M., Ženíšek, A.: Funkce komplexní proměnné, PC-Dir Real, Brno 2000 proměnné, PC-Dir Real, Brno 2000
Šulista, M.: Analýza v komplexním oboru, Stát.nakl.techn.lit., Praha 1986
Šulista, M.: Základy analýzy v komplexním oboru, Stát.nakl.techn.lit., Praha 1981
Elearning
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
1. Komplexní čísla, Gaussova rovina, množiny komplexních čísel
2. Funkce komplexní proměnné, limita, spojitost, elementární
funkce
3. Posloupnosti a řady komplexních čísel
4. Křivky
5. Derivace, holomorfní funkce, harmonické funkce
6. Posloupnosti a řady funkcí komplexní proměnné, mocninné řady
7. Integrál funkce komplexní proměnné, nezávislost na integrační
cestě
8. Cauchyova věta, Cauchyův integrální vzorec a jeho důsledky
9. Laurentovy řady
10. Izolované singulární body holomorfních funkcí
11. Rezidua, reziduová věta
12. Užití teorie reziduí
13. Konformní zobrazení
Cvičení
Vyučující / Lektor
Osnova
1. Komplexní čísla, Gaussova rovina, množiny komplexních čísel
2. Funkce komplexní proměnné, limita, spojitost
3. Elementární funkce
4. Křivky, posloupnosti a řady komplexních čísel
5. Derivace, holomorfní funkce
6. Posloupnosti a řady funkcí komplexní proměnné, mocninné řady
7. Integrál funkce komplexní proměnné
8. Integrál funkce komplexní proměnné
9. Laurentovy řady
10. Izolované singulární body holomorfních funkcí
11. Rezidua, reziduová věta
12. Užití teorie reziduí
13. Test
Elearning