Detail předmětu
Aplikovaná topologie
FSI-9APTAk. rok: 2024/2025
V předmětu budou studenti seznámeni se základy obecné topologie z hlediska aplikací v geometrii, analýze, algebře, logice a informatice.
Jazyk výuky
čeština, angličtina
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Znalosti z předmětů zaměřených na algebru a analýzu, které jsou vyučovány v bakalářském a magisterském stupni Matematického inženýrství.
Pravidla hodnocení a ukončení předmětu
Studenti musejí složit zkoušku, skládající se z písemné a ústní části. Během zkoušky bude zhodnocena znalost základních pojmů a jejich vlastností i schopnost užití teoretických vědomostí pro řešení konkrétních problémů.
Protože účast na přednáškách není pro studenty povinná, prezence při výuce nebude kontrolována.
Protože účast na přednáškách není pro studenty povinná, prezence při výuce nebude kontrolována.
Učební cíle
Cílem předmětu je seznámit studenty se základy topologie a s topologickými metodami často užívanými v ostatních matematických disciplínách a v informatice.
Studenti získají znalosti základních topologických pojmů a jejich vlastností a pochopí významnou roli, kterou topologie hraje v matematické analýze. Také se naučí řešit jednoduché topologické problémy a aplikovat získané výsledky do dalších matematických disciplín a do informatiky.
Studenti získají znalosti základních topologických pojmů a jejich vlastností a pochopí významnou roli, kterou topologie hraje v matematické analýze. Také se naučí řešit jednoduché topologické problémy a aplikovat získané výsledky do dalších matematických disciplín a do informatiky.
Základní literatura
E. Čech, Topological spaces, in: Topological Papers of Eduard Čech, ch. 28, Academia, Prague, 1968, 436 - 472. (EN)
J.L.Kelly, General Topology, Springer-Verlag, 1975. (EN)
N. Bourbali, Elements of Mathematics - General Topology, Chap. 1-4, Springer-Verlag, Berlin, 1989. (EN)
N.M.Martin and S. Pollard,Closure Spacers and Logic, Kluwer Acad. Publ., Dordrecht, 1996. (EN)
R.W. Hall, G.T. Hermann, Y. Kong and R. Kopperman, Digital Topology (Theory and Applications), Springer, 2006 (EN)
S. Vickers, Topology Via Logic, Cambridge University Press, New York, 1989. (EN)
J.L.Kelly, General Topology, Springer-Verlag, 1975. (EN)
N. Bourbali, Elements of Mathematics - General Topology, Chap. 1-4, Springer-Verlag, Berlin, 1989. (EN)
N.M.Martin and S. Pollard,Closure Spacers and Logic, Kluwer Acad. Publ., Dordrecht, 1996. (EN)
R.W. Hall, G.T. Hermann, Y. Kong and R. Kopperman, Digital Topology (Theory and Applications), Springer, 2006 (EN)
S. Vickers, Topology Via Logic, Cambridge University Press, New York, 1989. (EN)
Doporučená literatura
E. Čech, Topological spaces (Revised by Z. Frolík mand M. Katětov), Academia, Prague, 1966. (EN)
E. Čech, Topologické prostory, Nakladatelství ČSAV, Praha, 1959. (CS)
J. Adámek, V. Koubek a J. Reiterman, Základy obecné topologie, SNTL, Praha, 1977. (CS)
R. Engelking, General Topology,Panstwowe Wydawnictwo Naukowe, Warszawa, 1977. (EN)
T. Y. Kong and A. Rosenfeld, Digital topology: introduction and survey, Computer Vision, Graphics, and Image Processing 48(3), 1989, 357 - 393. Publisher Academic Press Professional, Inc. San Diego, CA, USA (EN)
E. Čech, Topologické prostory, Nakladatelství ČSAV, Praha, 1959. (CS)
J. Adámek, V. Koubek a J. Reiterman, Základy obecné topologie, SNTL, Praha, 1977. (CS)
R. Engelking, General Topology,Panstwowe Wydawnictwo Naukowe, Warszawa, 1977. (EN)
T. Y. Kong and A. Rosenfeld, Digital topology: introduction and survey, Computer Vision, Graphics, and Image Processing 48(3), 1989, 357 - 393. Publisher Academic Press Professional, Inc. San Diego, CA, USA (EN)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
20 hod., nepovinná
Vyučující / Lektor
Osnova
1. Základní pojmy teorie množin
2. Axiomatický systém uzávěrových operátorů
3. Čechovy uzávěrové operátory
4. Spojitá zobrazení
5. Kuratowského uzávěrové operátory a topologie
6. Základní vlastnosti topologických prostorů
7. Kompaktnost a souvislost
8. Metrické prostory
9. Uzávěrové operátory v algebře a logice
10. Úvod do digitální topologie
2. Axiomatický systém uzávěrových operátorů
3. Čechovy uzávěrové operátory
4. Spojitá zobrazení
5. Kuratowského uzávěrové operátory a topologie
6. Základní vlastnosti topologických prostorů
7. Kompaktnost a souvislost
8. Metrické prostory
9. Uzávěrové operátory v algebře a logice
10. Úvod do digitální topologie