Detail předmětu
Funkcionální analýza I
FSI-SU1Ak. rok: 2024/2025
V předmětu se diskutují základní pojmy a principy funkcionální analýzy týkající se především metrických prostorů, lineárních normovaných prostorů (speciálně Banachových) a unitárních prostorů (speciálně Hilbertových). Zmíněny jsou i elementy Lebesgueova integrálu. Dále je ukázáno využití těchto pojmů při řešení některých úloh matematické analýzy a numerické matematiky.
Jazyk výuky
čeština
Počet kreditů
5
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Diferenciální počet, integrální počet, diferenciální rovnice, lineární algebra, elementy teorie množin, elementy numerické matematiky.
Pravidla hodnocení a ukončení předmětu
Zápočet: aktivní účast ve cvičeních (účast je povinná), úspěšné napsání testu.
Zkouška: Zkouška má ústní formu. Diskutována je teorie i příklady. Vyžaduje se orientace v probraných základních pojmech a principech disciplíny a ilustrace teorie v konkrétních situacích.
Bude kontrolována účast na cvičeních. V průběhu semestru bude psán test.
Zkouška: Zkouška má ústní formu. Diskutována je teorie i příklady. Vyžaduje se orientace v probraných základních pojmech a principech disciplíny a ilustrace teorie v konkrétních situacích.
Bude kontrolována účast na cvičeních. V průběhu semestru bude psán test.
Učební cíle
Seznámit studenty a naučit je pracovat se základními pojmy a postupy funkcionální analýzy, které jsou využívány v dalších matematických disciplínách.
Základní znalost metrických, lineárních normovaných a unitárních prostorů, elementů Lebesgueova integrálu, teorie lineárních funkcionálů a souvisejících pojmů. Schopnost získané poznatky využívat.
Základní znalost metrických, lineárních normovaných a unitárních prostorů, elementů Lebesgueova integrálu, teorie lineárních funkcionálů a souvisejících pojmů. Schopnost získané poznatky využívat.
Základní literatura
A. N. Kolmogorov, S. V. Fomin: Základy teorie funkcí a funkcionální analýzy, SNTL, Praha 1975. (CS)
A. Torchinsky, Problems in real and functional analysis, American Mathematical Society 2015. (EN)
C. Costara, D. Popa, Exercises in functional analysis, Kluwer 2003. (EN)
D. Farenick, Fundamentals of functional analysis, Springer 2016. (EN)
D. H. Griffel, Applied functional analysis, Dover 2002. (EN)
E. Zeidler, Applied functional analysis: Main principles and their applications, Springer, 1995. (EN)
F. Burk, Lebesgue measure and integration: An introduction, Wiley 1998. (EN)
I. Netuka, Základy moderní analýzy, MatfyzPress 2014. (CS)
J. Franců, Funkcionální analýza 1, FSI VUT 2014. (CS)
J. Lukeš, Zápisky z funkcionální analýzy, Karolinum 1998. (CS)
Z. Došlá, O. Došlý, Metrické prostory: teorie a příklady, PřF MU Brno 2006. (CS)
A. Torchinsky, Problems in real and functional analysis, American Mathematical Society 2015. (EN)
C. Costara, D. Popa, Exercises in functional analysis, Kluwer 2003. (EN)
D. Farenick, Fundamentals of functional analysis, Springer 2016. (EN)
D. H. Griffel, Applied functional analysis, Dover 2002. (EN)
E. Zeidler, Applied functional analysis: Main principles and their applications, Springer, 1995. (EN)
F. Burk, Lebesgue measure and integration: An introduction, Wiley 1998. (EN)
I. Netuka, Základy moderní analýzy, MatfyzPress 2014. (CS)
J. Franců, Funkcionální analýza 1, FSI VUT 2014. (CS)
J. Lukeš, Zápisky z funkcionální analýzy, Karolinum 1998. (CS)
Z. Došlá, O. Došlý, Metrické prostory: teorie a příklady, PřF MU Brno 2006. (CS)
Doporučená literatura
A. N. Kolmogorov, S. V. Fomin: Základy teorie funkcí a funkcionální analýzy, SNTL, Praha 1975. (CS)
D. Farenick, Fundamentals of functional analysis, Springer 2016. (EN)
D. H. Griffel, Applied functional analysis, Dover 2002. (EN)
I. Netuka, Základy moderní analýzy, MatfyzPress 2014. (CS)
J. Franců, Funkcionální analýza 1, FSI VUT 2014. (CS)
D. Farenick, Fundamentals of functional analysis, Springer 2016. (EN)
D. H. Griffel, Applied functional analysis, Dover 2002. (EN)
I. Netuka, Základy moderní analýzy, MatfyzPress 2014. (CS)
J. Franců, Funkcionální analýza 1, FSI VUT 2014. (CS)
Elearning
eLearning: aktuální otevřený kurz
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
Metrické prostory
Základní pojmy a fakta. Uzavřené a otevřené množiny. Konvergence. Separabilní metrické prostory.
Úplné metrické prostory.
Zobrazení metrických prostorů. Banachova věta o pevném bodu. Aplikace.
Kompaktní prostory. Prekompaktnost a relativní kompaktnost. Arzeláova-Ascoliho věta.
Příklady.
Elementy teorie míry a integrálu
Motivace. Lebesgueova míra. Měřitelné funkce. Lebesgueův integrál.
Základní vlastnosti. Věty o limitních přechodech.
Lebesgueovy prostory.
Příklady.
Normované lineární prostory
Základní pojmy a fakta. Banachovy prostory.
Izometrie. Homeomorfismus.
Vliv dimenze prostoru.
Nekonečné řady v Banachových prostorech.
Schauderova věta a aplikace.
Příklady.
Unitární prostory
Základní pojmy a fakta. Hilbertovy prostory.
Izometrie. Ortogonalita. Ortogonální projekce,
Obecné Fourierovy řady. Rieszova-Fischerova věta.
Separabilní Hilbertovy prostory.
Příklady.
Lineární funkcionály, duální prostory
Pojem lineárního funkcionálu. Lineární funkcionály v normovaném prostoru.
Spojité a ohraničené funkcionály.
Hahnova-Banachova věta a její důsledky.
Duální prostor. Reflexivita.
Banachova-Steinhausova věta a její důsledky.
Slabá konvergence.
Příklady.
Speciální typy prostorů (v rámci probírané teorie), zejména prostory posloupností, prostory spojitých funkcí, prostory integrovatelných funkcí. Některé nerovnosti.
Základní pojmy a fakta. Uzavřené a otevřené množiny. Konvergence. Separabilní metrické prostory.
Úplné metrické prostory.
Zobrazení metrických prostorů. Banachova věta o pevném bodu. Aplikace.
Kompaktní prostory. Prekompaktnost a relativní kompaktnost. Arzeláova-Ascoliho věta.
Příklady.
Elementy teorie míry a integrálu
Motivace. Lebesgueova míra. Měřitelné funkce. Lebesgueův integrál.
Základní vlastnosti. Věty o limitních přechodech.
Lebesgueovy prostory.
Příklady.
Normované lineární prostory
Základní pojmy a fakta. Banachovy prostory.
Izometrie. Homeomorfismus.
Vliv dimenze prostoru.
Nekonečné řady v Banachových prostorech.
Schauderova věta a aplikace.
Příklady.
Unitární prostory
Základní pojmy a fakta. Hilbertovy prostory.
Izometrie. Ortogonalita. Ortogonální projekce,
Obecné Fourierovy řady. Rieszova-Fischerova věta.
Separabilní Hilbertovy prostory.
Příklady.
Lineární funkcionály, duální prostory
Pojem lineárního funkcionálu. Lineární funkcionály v normovaném prostoru.
Spojité a ohraničené funkcionály.
Hahnova-Banachova věta a její důsledky.
Duální prostor. Reflexivita.
Banachova-Steinhausova věta a její důsledky.
Slabá konvergence.
Příklady.
Speciální typy prostorů (v rámci probírané teorie), zejména prostory posloupností, prostory spojitých funkcí, prostory integrovatelných funkcí. Některé nerovnosti.
Cvičení
26 hod., povinná
Vyučující / Lektor
Osnova
Procvičování látky z přednášek zejména na konkrétních příkladech prostorů konečné dimenze, prostorů posloupností a prostorů spojitých a integrovatelných funkcí.
Elearning
eLearning: aktuální otevřený kurz