Detail předmětu
Řídicí elektronika
FEKT-BPC-REBAk. rok: 2024/2025
Řídicí obvody analogové a digitální.
Tranzistory bipolární a unipolární v lineárním režimu, ve spínacím režimu. Vnitřní struktura operačních zesilovačů, praktická zapojení s OZ. Logické obvody kombinační a sekvenční, vnitřní struktura obvodů TTL, CMOS. Paměti. Praktické zásady úspěšného obvodového návrhu. A/D a D/A převodníky. Speciální obvody. Snímače elektrických a neelektrických veličin.
Jazyk výuky
čeština
Počet kreditů
6
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Z oblasti aplikované matematiky musí mít student tyto předchozí znalosti:
- Využívat a aplikovat matematické operace s komplexními čísly ve složkovém i polárním tvaru (sčítání, odečítání, násobení, dělení dvou čísel, absolutní hodnota, usměrňování komplexního zlomku).
- Aplikovat základní principy integrálního a diferenciálního počtu funkce jedné proměnné (popis funkce cívky, tj. indukční zákon v diferenciálním a integrálním tvaru, podobně popis funkce kondenzátoru).
Student, který si zapíše předmět, musí mít tyto předchozí znalosti:
- Definovat impedanci, reaktanci a admitanci kondenzátoru.
- Definovat impedanci, reaktanci a admitanci cívky.
- Prakticky umět využívat a aplikovat následující nástroje pro analýzu a syntézu elektrických obvodů: 1. Kirchhoffův zákon, 2. Kirchhoffův zákon, Ohmův zákon, napěťový přenos děliče sestaveného ze dvou libovolných impedancí, výpočet paralelní kombinace dvou impedancí, Theveninova věta.
Práce v laboratoři je podmíněna platnou kvalifikací „osoby poučené“, kterou musí studenti získat před zahájením výuky. Informace k této kvalifikaci jsou uvedeny ve Směrnici děkana Seznámení studentů s bezpečnostními předpisy.
- Využívat a aplikovat matematické operace s komplexními čísly ve složkovém i polárním tvaru (sčítání, odečítání, násobení, dělení dvou čísel, absolutní hodnota, usměrňování komplexního zlomku).
- Aplikovat základní principy integrálního a diferenciálního počtu funkce jedné proměnné (popis funkce cívky, tj. indukční zákon v diferenciálním a integrálním tvaru, podobně popis funkce kondenzátoru).
Student, který si zapíše předmět, musí mít tyto předchozí znalosti:
- Definovat impedanci, reaktanci a admitanci kondenzátoru.
- Definovat impedanci, reaktanci a admitanci cívky.
- Prakticky umět využívat a aplikovat následující nástroje pro analýzu a syntézu elektrických obvodů: 1. Kirchhoffův zákon, 2. Kirchhoffův zákon, Ohmův zákon, napěťový přenos děliče sestaveného ze dvou libovolných impedancí, výpočet paralelní kombinace dvou impedancí, Theveninova věta.
Práce v laboratoři je podmíněna platnou kvalifikací „osoby poučené“, kterou musí studenti získat před zahájením výuky. Informace k této kvalifikaci jsou uvedeny ve Směrnici děkana Seznámení studentů s bezpečnostními předpisy.
Pravidla hodnocení a ukončení předmětu
30bodů za laboratorní a numerická cvičení.
70 bodů za písemnou semestrální zkoušku.
100 bodů celkem.
Účast na všech laboratorních cvičeních je povinná.
70 bodů za písemnou semestrální zkoušku.
100 bodů celkem.
Účast na všech laboratorních cvičeních je povinná.
Učební cíle
Zvládnutí základních teoretických i praktických dovedností pro samostatný návrh řídicích analogových a digitálních obvodů.
Písemnou a ústní zkouškou se ověřuje, že absolvent předmětu je schopen:
- Vyjmenovat pasivní obvodové prvky R,L,C, lineární/ nelineární, parametrické/neparametrické a popsat vlastnosti.
- Využít parametrické prvky ke konstrukci snímačů neelektrických veličin (teploty, mech. tlaku ...).
- Vyjmenovat základní zákony a pravidla pro řešení lineárních elektrických obvodů a využít je k řešení obvodů.
- Vyjmenovat a definovat základní přenosové parametry přenosových dvojbranů.
- Vypočítat a nakreslit amplitudovou i fázovou charakteristiku konkrétních pasivních dvojbranů typu RC, RLC.
- Spočítat a nastavit stejnosměrný pracovní bod bipolárního tranzistoru v libovolném zapojení.
- Vyjmenovat a definovat h-parametry bipolárního tranzistoru.
- Spočítat napěťové zesílení a vstupní impedanci bipolárního tranzistoru v zapojeních: SE, SE+Re, SC, SB.
- Znázornit zapojení a vysvětlit funkci rozdílového zesilovače, proudového zrcadla a zdroje konstantního proudu.
- Znázornit vnitřní strukturu jednoduchého operačního zesilovače a vysvětlit princip činnosti.
- Znázornit následující lineární obvody s operačními zesilovači: P, I, D, PI. Vypočítat jejich přenosové vlastnosti ve frekvenční i časové oblasti, nakreslit amplitudové a frekvenční charakteristiky.
- Vysvětlit rozdíl mezi digitálními obvody kombinačními a sekvenčními.
- Vyjmenovat axiomy a věty Booleovy algebry. Prakticky je umět využít k minimalizaci logických výrazů.
- Vytvořit logický výraz z logické tabulky.
- Sestavit logický kombinační obvod zadaný logickým výrazem.
- Vyjmenovat základní typy sekvenčních logických obvodů.
- Vyjmenovat základní typy bistabilních klopných obvodů RS, RST, JK, D. Popsat jejich vlastnosti a funkci.
- Popsat princip D/A převodníků.
- Vyjmenovat základní typy A/D převodníků.
V laboratorních cvičeních student měří a pomocí osciloskopu analyzuje signály v různých elektronických obvodech. Každý obvod (tj. každá úloha) je realizován na desce plošných spojů tak, jak je tomu ve skutečné technické praxi. Student se naučí následující dovednosti:
- Ovládat a používat základní měřicí přístroje v elektronické laboratoři: osciloskop, signálový generátor, laboratorní zdroje.
- Změřit vlastnosti fázového závěsu s obvodem 4046.
- Změřit přenosové vlastnosti operačního zesilovače v invertujícím a neinvertujícím zapojení: P, P + zpětnovazební dolní propust 1. řádu, sledovač.
- Změřit přenosové vlastnosti aktivní dolní propusti 2. řádu s operačním zesilovačem.
- Změřit statické a dynamické vlastnosti signálového tranzistoru ve spínacím režimu. Obvodově navrhnout optimální budicí obvod tranzistoru ve spínacím režimu.
- Změřit a analyzovat statické a dynamické vlastnosti operačního zesilovače zapojeného jako komparátor bez nebo s hysterezí. Realizovat oscilátor pomocí komparátoru s hysterezí.
- Změřit a analyzovat vlastnosti operačního zesilovače zapojeného jako integrátor. Využít integrátor k realizaci generátoru trojúhelníkového signálu. Sestavit pomocí něho PWM modulátor.
- Změřit statické vlastnosti zdroje konstantního proudu s bipolárním tranzistorem. Sestavit pomocí něho generátor pilového napětí.
- Popsat funkci a zapojení D/A převodníku DAC08, programovatelného čítače CMOS 4029 a paměti Intel 27C64.
Písemnou a ústní zkouškou se ověřuje, že absolvent předmětu je schopen:
- Vyjmenovat pasivní obvodové prvky R,L,C, lineární/ nelineární, parametrické/neparametrické a popsat vlastnosti.
- Využít parametrické prvky ke konstrukci snímačů neelektrických veličin (teploty, mech. tlaku ...).
- Vyjmenovat základní zákony a pravidla pro řešení lineárních elektrických obvodů a využít je k řešení obvodů.
- Vyjmenovat a definovat základní přenosové parametry přenosových dvojbranů.
- Vypočítat a nakreslit amplitudovou i fázovou charakteristiku konkrétních pasivních dvojbranů typu RC, RLC.
- Spočítat a nastavit stejnosměrný pracovní bod bipolárního tranzistoru v libovolném zapojení.
- Vyjmenovat a definovat h-parametry bipolárního tranzistoru.
- Spočítat napěťové zesílení a vstupní impedanci bipolárního tranzistoru v zapojeních: SE, SE+Re, SC, SB.
- Znázornit zapojení a vysvětlit funkci rozdílového zesilovače, proudového zrcadla a zdroje konstantního proudu.
- Znázornit vnitřní strukturu jednoduchého operačního zesilovače a vysvětlit princip činnosti.
- Znázornit následující lineární obvody s operačními zesilovači: P, I, D, PI. Vypočítat jejich přenosové vlastnosti ve frekvenční i časové oblasti, nakreslit amplitudové a frekvenční charakteristiky.
- Vysvětlit rozdíl mezi digitálními obvody kombinačními a sekvenčními.
- Vyjmenovat axiomy a věty Booleovy algebry. Prakticky je umět využít k minimalizaci logických výrazů.
- Vytvořit logický výraz z logické tabulky.
- Sestavit logický kombinační obvod zadaný logickým výrazem.
- Vyjmenovat základní typy sekvenčních logických obvodů.
- Vyjmenovat základní typy bistabilních klopných obvodů RS, RST, JK, D. Popsat jejich vlastnosti a funkci.
- Popsat princip D/A převodníků.
- Vyjmenovat základní typy A/D převodníků.
V laboratorních cvičeních student měří a pomocí osciloskopu analyzuje signály v různých elektronických obvodech. Každý obvod (tj. každá úloha) je realizován na desce plošných spojů tak, jak je tomu ve skutečné technické praxi. Student se naučí následující dovednosti:
- Ovládat a používat základní měřicí přístroje v elektronické laboratoři: osciloskop, signálový generátor, laboratorní zdroje.
- Změřit vlastnosti fázového závěsu s obvodem 4046.
- Změřit přenosové vlastnosti operačního zesilovače v invertujícím a neinvertujícím zapojení: P, P + zpětnovazební dolní propust 1. řádu, sledovač.
- Změřit přenosové vlastnosti aktivní dolní propusti 2. řádu s operačním zesilovačem.
- Změřit statické a dynamické vlastnosti signálového tranzistoru ve spínacím režimu. Obvodově navrhnout optimální budicí obvod tranzistoru ve spínacím režimu.
- Změřit a analyzovat statické a dynamické vlastnosti operačního zesilovače zapojeného jako komparátor bez nebo s hysterezí. Realizovat oscilátor pomocí komparátoru s hysterezí.
- Změřit a analyzovat vlastnosti operačního zesilovače zapojeného jako integrátor. Využít integrátor k realizaci generátoru trojúhelníkového signálu. Sestavit pomocí něho PWM modulátor.
- Změřit statické vlastnosti zdroje konstantního proudu s bipolárním tranzistorem. Sestavit pomocí něho generátor pilového napětí.
- Popsat funkci a zapojení D/A převodníku DAC08, programovatelného čítače CMOS 4029 a paměti Intel 27C64.
Základní literatura
Patočka M., Burian F.: Sbírka řešených příkladů z řídicí elektroniky (CS)
Patočka M., Vorel P.: Řídicí elektronika - aktivní obvody. (CS)
Patočka M., Vorel P.: Řídicí elektronika - pasivní obvody. (CS)
Patočka M., Vorel P.: Řídicí elektronika - aktivní obvody. (CS)
Patočka M., Vorel P.: Řídicí elektronika - pasivní obvody. (CS)
Zařazení předmětu ve studijních plánech
- Program BPC-SEE bakalářský 3 ročník, zimní semestr, povinně volitelný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
1. Pasivní obvodové prvky R,L,C, lineární/nelineární, parametrické/neparametrické.
2. Parametrické prvky jako snímače neelektrických veličin.
3. Základní zákony a pravidla pro řešení lineárních elektrických obvodů.
4. Přenosové čtyřpóly, dvojbrany. Základní přenosové parametry. Konkrétní pasivní dvojbrany RC, RLC, transformátor napětí, transformátor proudu.
5. Bipolární a unipolární tranzistory - nastavení ss. pracovního bodu, h-parametry. Zapojení: SE, SC, SB, rozdílový zesilovač, kaskody, proudová zrcadla.
6. Vnitřní struktura operačních zesilovačů.
7. Lineární zapojení s operačními zesilovači.
8. Nelineární zapojení s operačními zesilovači.
9. Digitální obvody kombinační, sekvenční.
10. Syntéza kombinačních obvodů.
11. Syntéza sekvenčních obvodů.
12. D/A převodníky.
13. A/D převodníky.
2. Parametrické prvky jako snímače neelektrických veličin.
3. Základní zákony a pravidla pro řešení lineárních elektrických obvodů.
4. Přenosové čtyřpóly, dvojbrany. Základní přenosové parametry. Konkrétní pasivní dvojbrany RC, RLC, transformátor napětí, transformátor proudu.
5. Bipolární a unipolární tranzistory - nastavení ss. pracovního bodu, h-parametry. Zapojení: SE, SC, SB, rozdílový zesilovač, kaskody, proudová zrcadla.
6. Vnitřní struktura operačních zesilovačů.
7. Lineární zapojení s operačními zesilovači.
8. Nelineární zapojení s operačními zesilovači.
9. Digitální obvody kombinační, sekvenční.
10. Syntéza kombinačních obvodů.
11. Syntéza sekvenčních obvodů.
12. D/A převodníky.
13. A/D převodníky.
Laboratorní cvičení
26 hod., povinná
Vyučující / Lektor
Osnova
Tranzistory bipolární, unipolární. Lineární režim.
Tranzistory - spínací režim.
Vnitřní struktura operačních zesilovačů (OZ).
Zapojení s OZ - lineární obvody.
Zapojení s OZ - nelineární obvody.
Zapojení s OZ - zvláštní obvody.
Vnitřní struktura digitálních obvodů TTL, CMOS.
Digitální obvody kombinační.
Digitální obvody sekvenční.
Paměti.
A/D převodníky.
D/A převodníky.
Zvláštní obvody.
Tranzistory - spínací režim.
Vnitřní struktura operačních zesilovačů (OZ).
Zapojení s OZ - lineární obvody.
Zapojení s OZ - nelineární obvody.
Zapojení s OZ - zvláštní obvody.
Vnitřní struktura digitálních obvodů TTL, CMOS.
Digitální obvody kombinační.
Digitální obvody sekvenční.
Paměti.
A/D převodníky.
D/A převodníky.
Zvláštní obvody.