Detail předmětu
Diskrétní procesy v elektrotechnice
FEKT-DPC-MA2Ak. rok: 2024/2025
Tento předmět je věnován popisu procesů pomocí diskrétních rovnic. Je tvořen třemi celky:
a) základním aparátem a základními metodami analýzy diskrétních procesů,
b) aplikacemi diferenčních rovnic a rozhodování o stabilitě procesů,
c) aplikacemi diferenčních rovnic při řízení procesů.
Podrobně je osnova předmětu popsána v bodě "Osnova". Předmět je vhodný pro studentky a studentky doktorského studia, kteří při své práci používají diskrétní a diferenční vztahy a rovnice a taktéž numerické algoritmy. Jako příklad lze uvést použití pro matematické modelování jevů v nanotechnologiích, teorii řízení a při zpracování signálů.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Pravidla hodnocení a ukončení předmětu
Nutnou podmínkou (pro vykonání zkoušky) jsou tři vypracované referáty z publikovaných článků aplikačního charakteru s aplikacemi diskrétních rovnic.
Učební cíle
a pozorovatelnosti.
Schopnost orientace v základních pojmech a metodách diskrétních a diferenčních. Řešení úloh z oblastí, uvedených v osnově předmětu, pomocí aplikace těchto metod. Řešení úloh využitím moderního matematického software. Hlavní výstupy jsou:
1) Schopnost řešit základní diferenční rovnice prvního řádu.
2) Užití diferenčních rovnic prvního řádu na řešení aplikačních úloh modelovaných diferenčními rovnicemi prvního řádu. Diskretizace diferenciálních rovnic a jejich převod na diskrétní rovnice, modelování obvodů diferenčními rovnicemi.
3) Nalezení rovnovážných bodů skalárních diferenčních rovnic, určení jejich stability a dalších možností chování řešení v jejich okolí.
4) Konstrukce pavučinových diagramů pro vyšetření stability rovnovážných bodů.
5) Zjistění stability numerických algoritmů na základě rovnovážných bodů.
6) Použití základních vztahů diskrétního kalkulu.
7) Řešení homogenních a nehomogenních lineárních diskrétních rovnic vyšších řádů.
8) Konstrukce řešení systému homogenních a nehomogenních lineárních diferenčních rovnic prvního řádu.
9) Řešení lineárních homogenního lineárního systému diferenčních rovnic pomocí Putzerova algoritmu. Nalezení partikulárního řešení.
10) Zjištování stability a nestability nelineárních a lineárních diskrétních system metodou fundamentální matice a Ljapunovovou metodou.
11) Užití transformace Z k řešení lineárních diferenčních rovnic vyššího řádu a lineárních diferenčních system.
12) Zjištění řiditelnosti a pozorovatelnosti lineárních diskrétních systemů.
Studijní opory
Základní literatura
Mickens, Ronald E., Difference Equations: Theory, Applications and Advanced Topics, Third Edition, Chapman & Hall/CRC, 2016 (CS)
Oppenheim, Alan, V., Schaffer, Ronald, W., Discrete-Time Signal Processing, 3rd Edition, Pearson, 2014 (CS)
Doporučená literatura
Sami Fadali, M., Visioli, A., Digital Control Engineering, Analysis and Design, 2nd Edition, Elsewier, AP, 2013 (CS)
Zařazení předmětu ve studijních plánech
- Program DPC-EKT doktorský 0 ročník, letní semestr, povinně volitelný
- Program DPC-IBE doktorský 0 ročník, letní semestr, povinně volitelný
- Program DPC-KAM doktorský 0 ročník, letní semestr, povinně volitelný
- Program DPC-MET doktorský 0 ročník, letní semestr, povinně volitelný
- Program DPC-SEE doktorský 0 ročník, letní semestr, povinně volitelný
- Program DPC-TEE doktorský 0 ročník, letní semestr, povinně volitelný
- Program DPC-TLI doktorský 0 ročník, letní semestr, povinně volitelný
Typ (způsob) výuky
Seminář
Vyučující / Lektor
Osnova
I. Základní aparát a základní metody vyšetřování diskrétních procesů (5 týdnů). Diskrétní počet (vybrané diferenční vztahy na základě spojitých analogií). Diferenční rovnice a systémy. Základní pojmy, užívané v diskrétních rovnicích (rovnovážné body, periodické body, body potenciálně rovnovážné a potenciálně periodické, stabilita řešení, přitahující a odpuzující body) a jejich ilustrace na příkladech (modelování obvodů diskrétními rovnicemi, přenos informace). Rekurzivní algoritmy řešení systémů diskrétních rovnic a rovnic vyšších řádů (případ konstantních koeficientů, metoda variace parametrů, metoda neurčitých koeficientů). Konstrukce obecného řešení. Transformace některých nelineárních rovnic na lineární. Diferenční rovnice sestavované na bází vzorkování, impulsové podněty, výpočet charakteristik z odezvy signálu (odezva Diracovy distribuce), přechodné děje.
II. Aplikace diferenčních rovnic – stabilita procesů (4 týdny). Stabilita rovnovážných bodů. Typy stability a nestability. Stabilita lineárních systémů s proměnnou maticí. Stabilita nelineárních systémů podle lineární aproximace. Ljapunovova přímá metoda pro zjištění stability. Fázová analýza dvourozměrného diskrétního systému s konstantními koeficienty, klasifikace rovnovážných bodů.
III. Aplikace diferenčních rovnic - řízení procesů (4 týdny). Diskrétní ekvivalenty spojitých systémů. Diskrétní teorie řízení, řiditelnost, úplná řiditelnost, matice řiditelnosti, kanonické tvary řiditelnosti, řiditelná kanonická forma, konstrukce algoritmu řízení. Pozorovatelnost úplná pozorovatelnost, nepozorovatelnost, princip duality, matice pozorovatelnosti. Kanonické tvary pozorovatelnosti, vztah řiditelnosti a pozorovatelnosti. Stabilizace řízení dle zpětné vazby.