Detail předmětu

Moderní matematické metody v informatice

FIT-MIDAk. rok: 2024/2025

Naivní a axiomatická (Zermelo-Fraenkelova) teorie množin, konečné a spočetné množiny, kardinální aritmetika, hypotéza kontinua a axiom výběru. Částečně a dobře uspořádané množiny, izotonní zobrazení, ordinály. Variety univerzálních algeber, Birkhoffova věta. Svazy a svazové homomorfismy. Adjunkce, věty o pevných bodech a jejich aplikace. Částečně uspořádané množiny se supremy usměrněných množin (DCPO) a jejich využití v informatice. Scottovy informační systémy a domény, kategorie domén. Uzávěrové a topologické prostory a jejich využití v informatice (Scottova, Lawsonova a Khalimského topologie).
 
Okruhy otázek k SDZ:

  1. Uspořádané množiny (posety) a monotónní zobrazení.
  2. Axiom výběru a věty s ním ekvivalentní.
  3. Dualita posetů, dolní množiny a dolní zobrazení, podmínky řetězců.
  4. Symetrický a tranzitivní obal relace, linearizace uspořádání.
  5. Dobře uspořádaní množiny, ordinální a kardinální čísla, transfinitní indukce.
  6. Polosvazy, svazy a úplné svazy.
  7. Průsekové struktury a uzávěrové operátory.
  8. Spojově a průsekově ireducibilní prvky svazu, podmínky řetězců a úplnost svazů.
  9. Ideály a filtry, Dedekind-MacNailleovo zúplnění.
  10. Modulární a distributivní svazy, Booleovy algebry.

 
 

 

Jazyk výuky

čeština

Vstupní znalosti

Základní znalosti teorie množin, matematické logiky a obecné algebry.

Pravidla hodnocení a ukončení předmětu

Testy během semestru
Předmět je hodnocen na základě výsledku závěrečné zkoušky, ke složení zkoušky je třeba získat nejméně 50 z celkového počtu 100 bodů.

Učební cíle

Cílem předmětu je seznámit studenty s moderními matematickými metodami využívanými v informatice. Jedná se především o metody založené na teorii uspořádaných množin a svazů, algebře a topologii.
Studenti získají znalosti o moderních matematických metodách využívaných v informatice a budou tak moci tyto medody aplikovat při práci ve svojí vědecké specializaci. 
Absolventi budou schopni při své vědecké činnosti v informatice využívat moderních a efektivních matematických metod.

Prerekvizity a korekvizity

Doporučená literatura

G. Grätzer, Lattice Theory, Birkhäuser, 2003
N.M. Martin and S. Pollard, Closure Spaces and Logic, Kluwer, 1996
P.T. Johnstone, Stone Spaces, Cambridge University Press, 1982
S. Roman, Lattices and Ordered Sets, Springer, 2008.
T. Y. Kong, Digital topology; in L. S. Davis (ed.), Foundations of Image Understanding, pp. 73-93. Kluwer, 2001

V.K.Garg, Introduction to Lattice Theory with Computer Science Applications, Wiley, 2015

Zařazení předmětu ve studijních plánech

  • Program DIT doktorský 0 ročník, zimní semestr, povinně volitelný
  • Program DIT doktorský 0 ročník, zimní semestr, povinně volitelný
  • Program DIT-EN doktorský 0 ročník, zimní semestr, povinně volitelný
  • Program DIT-EN doktorský 0 ročník, zimní semestr, povinně volitelný

  • Program VTI-DR-4 doktorský

    obor DVI4 , 0 ročník, zimní semestr, volitelný

  • Program VTI-DR-4 doktorský

    obor DVI4 , 0 ročník, zimní semestr, volitelný

  • Program VTI-DR-4 doktorský

    obor DVI4 , 0 ročník, zimní semestr, volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

  1. Naivní a axiomatická (Zermelo-Fraenkelova) teorie množin, konečné a spočetné množiny.
  2. Kardinální aritmetika, hypotéza kontinua a axiom výběru.
  3. Částečně a dobře uspořádané množiny, monotonní zobrazení, ordinály.
  4. Variety univerzálních algeber, Birkhoffova věta.
  5. Svazy a svazové homomorfismy.
  6. Adjunkce, věty o pevných bodech a jejich aplikace 
  7. Částečně uspořádané množiny se supremy usměrněných množin (DCPO) a jejich využití v informatice 
  8. Scottovy informační systémy a domény, kategorie domén. 
  9. Uzávěrové operátory, jejich základní vlastnosti a aplikace v logice. 
  10. Základy topologie: topologické prostory a spojitá zobrazení, oddělovací axiomy. 
  11. Souvislost a kompaktnost v topologických prostorech. 
  12. Speciální topologie v informatice: Scottova a Lawsonova topologie. 
  13. Digitální topologie, Khalimského topologie.  

Konzultace v kombinovaném studiu

26 hod., nepovinná

Vyučující / Lektor