Detail předmětu

Pravděpodobnost a statistika

FIT-IPTAk. rok: 2024/2025

Klasická pravděpodobnost. Axiomatická definice pravděpodobnosti. Podmíněná pravděpodobnost. Úplná pravděpodobnost, Bayesův vzorec. Náhodná veličina a náhodný vektor. Charakteristiky náhodné veličiny a vektoru. Vybraná diskrétní a spojitá rozdělení pravděpodobnosti. Centrální limitní věta. Transformace náhodných veličin. Závislost a nezávislost náhodných veličin. Vícerozměrné normální rozdělení. Popisná statistika. Náhodný výběr. Bodové a intervalové odhady parametrů rozdělení. Metoda maximální věrohodnosti. Testování statistických hypotéz. Test dobré shody. Analýza rozptylu. Korelační a regresní analýza. Bayesovská statistika.

Jazyk výuky

čeština

Počet kreditů

5

Garant předmětu

Zajišťuje ústav

Vstupní znalosti

Středoškolská matematika a vybrané partie z předchozích matematických předmětů.

Pravidla hodnocení a ukončení předmětu

  • Samostatné práce během semestru: 20 bodů.
  • Závěrečná zkouška: 80 bodů.

Absolvování cvičení ve stanoveném rozsahu. V případě nemoci řešeno individuálně s vyučujícím.

Učební cíle

Předmět si klade za cíl seznámit posluchače se základními metodami pravděpodobnosti a matematické statistiky, které lze využít nejen při studiu informačních technologií.
Získané znalosti lze uplatnit například v odborných předmětech nebo při tvorbě závěrečných prací.

Prerekvizity a korekvizity

Doporučená literatura

Hlavičková, I., Hliněná, D.: Matematika 3. Sbírka úloh z pravděpodobnosti. VUT v Brně, 2015 (CS)
Montgomery, D. C., Runger, G. C.: Applied Statistics and Probability for Engineers. New York: John Wiley & Sons, 2011. (EN)

Elearning

Zařazení předmětu ve studijních plánech

  • Program BIT bakalářský 2 ročník, zimní semestr, povinný
  • Program BIT bakalářský 2 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

  1. Úvod do teorie pravděpodobnosti. Zdroje pravděpodobnosti - kombinatorika a data, intuitivní odhady pravděpodobností. Klasická pravděpodobnost.
  2. Axiomatická definice pravděpodobnosti. Podmíněná pravděpodobnost, závislost a nezávislost. Pravidlo o násobení a sčítání pravděpodobností. Úplná pravděpodobnost, Bayesův vzorec.
  3. Náhodná veličina (diskrétní a spojitá), pravděpodobnostní funkce, distribuční funkce, hustota rozdělení pravděpodobností. Charakteristiky náhodné veličiny (střední hodnota, rozptyl, šikmost, špičatost).
  4. Diskrétní rozdělení pravděpodobnosti: Bernoulliho, binomické, hypergeometrické, geometrické, Poissonovo.
  5. Spojité rozdělení pravděpodobnosti: rovnoměrné, exponenciální,  normální. Centrální limitní věta.
  6. Základní lineární a nelineární aritmetika s náhodnou veličinou a její vliv na parametry rozdělení pravděpodobnosti.
  7. Náhodný vektor (diskrétní a spojitý). Sdružená a marginální pravděpodobnostní funkce, distribuční funkce, hustota. Charakteristiky náhodného vektoru (střední hodnota, rozptyl, kovariance, korelační koeficient). Závislost a nezávislost náhodných veličin. Vícerozměrné normální rozdělení.
  8. Úvod do statistiky. Výběrová šetření. Popisná statistika. Třídění a zpracování datových souborů. Charakteristiky polohy, variability, tvaru, výběrové momenty a grafické znázornění dat.
  9. Teorie odhadu. Bodové odhady parametrů rozdělení. Metoda maximální věrohodnosti. Bayesovská inference.
  10. Intervalové odhady parametrů rozdělení. Testování statistických hypotéz. Jednovýběrové a dvouvýběrové testy (párový a nepárový t-test,  F-test).
  11. Testy dobré shody.
  12. Uvod do regresní analýzy. Lineární regrese (přímka, parabola).
  13. Korelační a analýza. Pearsonův a Spearmannův korelační koeficient.

Cvičení s počítačovou podporou

26 hod., povinná

Vyučující / Lektor

Osnova

Budou procvičena témata z přednášek ve vhodném rozsahu. 

Elearning