Detail předmětu
Matematika 4
FAST-BA004Ak. rok: 2024/2025
Diskrétní a spojitá náhodná veličina a vektor, rozdělovací funkce, pravděpodobnost, distribuční funkce, transformace náhodných veličin, nezávislost náhodných veličin, číselné charakteristiky náhodných veličin a vektorů, speciální zákony rozdělení. Náhodný výběr, bodový odhad neznámého parametru rozložení a jeho vlastnosti, intervalový odhad parametru rozložení, testování statistických hypotéz, testy o parametrech rozdělení, testy dobré shody, základy regresní analýzy.
Jazyk výuky
čeština
Počet kreditů
5
Garant předmětu
Zajišťuje ústav
Ústav matematiky a deskriptivní geometrie (MAT)
Vstupní znalosti
Ovládat elementární pojmy teorie funkcí jedné a více reálných proměnných (derivace, parciální derivace, limita a spojitost, grafy funkcí). Umět řešit určité integrály, dvojné a trojné integrály, znát jejich základní aplikace.
Pravidla hodnocení a ukončení předmětu
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Učební cíle
Získat přehled o základních vlastnostech pravděpodobnosti a umět řešit jednoduché praktické pravděpodobnostní problémy. Seznámit se se základními statistickými metodami pro itervalové odhady parametrů, testování parametrických i neparametrických statistických hypotéz a lineární model.
Student zvládne řešení jednoduchých praktických pravděpodobnostních problémů a používání základních statistických metod z oblasti itervalových odhadů parametrů, testování parametrických i neparametrických statistických hypotéz a lineárních modelů.
Student zvládne řešení jednoduchých praktických pravděpodobnostních problémů a používání základních statistických metod z oblasti itervalových odhadů parametrů, testování parametrických i neparametrických statistických hypotéz a lineárních modelů.
Základní literatura
KOUTKOVÁ, H., DLOUHY, O. Sbírka příkladů z pravděpodobnosti a matematické statistiky. CERM Brno, 2011. ISBN 978-80-7204-740-6. (CS)
KOUTKOVÁ, H. Elektronické studijní opory. M03 - Základy teroie odhadu, M04 - Základy testování hypotéz. FAST VUT Brno, 2004. [https://intranet.fce.vutbr.cz/pedagog/predmety/opory.asp ] (CS)
KOUTKOVÁ, H. Základy teorie odhadu. Brno: CERM, 2007. 51 s. ISBN 978-80-7204-527-3. (CS)
KOUTKOVÁ, H. Základy testování hypotéz. Brno: CERM, 2007. 52 s. ISBN 978-80-7204-528-0. (CS)
KOUTKOVÁ, H., MOLL, I. Základy pravděpodobnosti. CERM, 2011. 127 s. ISBN 978-80-7204-783-3. (CS)
KOUTKOVÁ, H. Elektronické studijní opory. M03 - Základy teroie odhadu, M04 - Základy testování hypotéz. FAST VUT Brno, 2004. [https://intranet.fce.vutbr.cz/pedagog/predmety/opory.asp ] (CS)
KOUTKOVÁ, H. Základy teorie odhadu. Brno: CERM, 2007. 51 s. ISBN 978-80-7204-527-3. (CS)
KOUTKOVÁ, H. Základy testování hypotéz. Brno: CERM, 2007. 52 s. ISBN 978-80-7204-528-0. (CS)
KOUTKOVÁ, H., MOLL, I. Základy pravděpodobnosti. CERM, 2011. 127 s. ISBN 978-80-7204-783-3. (CS)
Doporučená literatura
WALPOLE, R.E., MYERS, R.H. Probability and Statistics for Engineers and Scientists. 8th ed. London: Prentice Hall, Pearson education LTD, 2007.823 p. ISBN 0-13-204767-5. (EN)
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
1. Diskrétní a spojitá náhodná veličina (náhodný vektor), rozdělovací funkce. Pravděpodobnost.
2. Vlastnosti pravděpodobnosti. Distribuční funkce. Vlastnosti distribuční funkce.
3. Vztahy mezi rozdělovací a distribuční funkcí náhodné veličiny. Marginální náhodný vektor.
4. Nezávislé náhodné veličiny. Číselné charakteristiky náhodných veličin: střední hodnota, rozptyl, směrodatná odchylka, variační koeficient, modus, kvantily. Pravidla pro výpočet střední hodnoty a rozptylu.
5. Číselné charakteristiky náhodných vektorů: kovariance, korelační koeficient, kovarianční a korelační matice.
6. Některé zákony diskrétního rozdělení – klasické, alternativní, binomické, Poissonovo – definice, použití.
7. Některé zákony spojitého rozdělení – rovnoměrné, exponenciální, normální i vícerozměrné - definice, použití.
8. Chí- kvadrát rozdělení, Studentovo rozdělení – vznik, použití. Náhodný výběr. Výběrové statistiky.
9. Rozdělení výběrových statistik. Bodový odhad parametrů rozdělení. Požadované vlastnosti odhadu.
10. Intervalový odhad parametrů rozdělení.
11. Testování statistických hypotéz - podstata. Testy o parametrech normálního rozdělení.
12. Testy dobré shody. Chí – kvadrát test. Základní pojmy regresní analýzy.
13. Lineární model.
Cvičení
26 hod., povinná
Vyučující / Lektor
Osnova
1. Výběrová rozdělovací funkce. Histogram.
2. Rozdělovací funkce náhodné veličiny. Pravděpodobnost.
3. Distribuční funkce. Vztahy mezi rozdělovací a distribuční funkcí.
4. Transformace náhodných veličin – pouze na cvičení.
5. Marginální a simultánní náhodný vektor. Nezávislost náhodných veličin.
6. Výpočet střední hodnoty, rozptylu, směrodatné odchylky, variačního koeficientu, modu a kvantilů náhodné veličiny. Pravidla pro výpočet střední hodnoty a rozptylu.
7. Korelační koeficient. Písemka.
8. Výpočet pravděpodobnosti v případech speciálních zákonů rozdělení pravděpodobnosti - alternativní, binomické, Poissonovo.
9. Výpočet pravděpodobnosti v případě normálního rozdělení. Práce se statistickými tabulkami.
10. Výpočet realizací výběrových statistik. Aplikační příklady na jejich rozdělení.
11. Výpočet realizací intervalového odhadu parametrů normálního rozdělení.
12. Testování hypotéz o hodnotách parametrů normálního rozdělení.
13. Testy dobré shody. Zápočet.