Detail předmětu
Matematika 1
FAST-BA001Ak. rok: 2024/2025
Reálná funkce jedné reálné proměnné. Posloupnosti, limita a spojitost funkce. Derivace funkce, její geometrický a fyzikální význam, základní věty o derivacích, derivace vyšších řádů, diferenciály funkce, Taylorův rozvoj funkce, průběh funkce.
Lineární algebra (základy maticového počtu, hodnost matice, Gaussova eliminační metoda, inverze matic, determinanty a jejich aplikace). Vlastní čísla a vlastní vektory matice. Základy vektorového počtu. Lineární prostory. Analytická geometrie (skalární, vektorový a smíšený součin vektorů, afinní a metrické úlohy pro lineární útvary v prostoru).
Základní numerické metody (interpolace, řešení nelineární rovnice a systémů lineárních rovnic, derivování).
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Pravidla hodnocení a ukončení předmětu
Učební cíle
Schopnost počítat s maticemi, umět provádět elementární úpravy a vyčíslení determinantů, umět řešit soustavy lineárních algebraických rovnic, zvládnout Gaussovu eliminační metodu řešení soustav.
Student zvládne hlavní cíle předmětu. Pochopí základní pojmy diferenciálního a integrálního počtu funkce jedné proměnné a geometrické interpretace některých pojmů. Zvládne kalkul derivování a naučí se řešit úlohu průběhu funkce.
Zvládne počítání s maticemi, elementární úpravy a vyčíslení determinantů, řešení soustavy lineárních algebraických rovnic (Gaussovou eliminační metodou, Cramerovým pravidlem a užitím inverzní matice). Seznámí se s užitím vektorového počtu v řešení úloh analytické geometrie v prostoru.
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
Cvičení
Vyučující / Lektor
Osnova
1. Absolutní hodnota funkce. Řešení kvadratické rovnice v komplexním oboru. Kuželosečky. Grafy vybraných typů elementárních funkcí. Základní vlastnosti funkcí. 2. Funkce složená a inverzní (cyklometrické funkce, logaritmické funkce). Funkce zadané parametricky. Numerické řešení nelineární rovnice (bisekce, regula falsi). 3. Polynom, znaménko polynomu. Interpolační polynom, Lagrangeův a Newtonův tvar. 4. Racionální funkce, znaménko racionální funkce, rozklad v parciální zlomky. 5. Limita funkce. Derivace funkce (výpočet z definice) a její geometrický význam, procvičení základních vzorců a pravidel pro derivování. 6. Derivace složené funkce. Procvičování základních vzorců a pravidel pro derivování. Numerické derivování. 7. Test I. Derivace vyšších řádů. Taylorova věta. L` Hospitalovo pravidlo. Řešení nelineární rovnice (metoda tečen a sečen). 8. Asymptoty grafu funkce. Průběh funkce. 9. Základní operace s maticemi. Elementární úpravy matice, hodnost matice, řešení soustav lineárních algebraických rovnic Gaussovou eliminační metodou. Numerické řešení soustav lineárních algebraických rovnic (výběr hlavního prvku, LU rozklad). 10. Výpočet determinantů užitím Laplaceova rozvoje a pravidel pro počítání s determinanty. Výpočet inverzní matice pro matice 2. a 3. řádu Jordanovou metodou. Iterační metody řešení soustav (Jacobiova, Gaussova-Seidelova). 11. Test II. Maticové rovnice. Řešení přeurčených soustav lineárních algebraických rovnic metodou nejmenších čtverců. Vlastní čísla a vektory matice. 12. Použití skalárního a vektorového součinu při řešení úloh analytické geometrie v prostoru. 13. Smíšený součin. Zápočty.