Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail předmětu
FP-BAASEAk. rok: 2024/2025
Studenti získají základní znalosti náhodných veličin diskrétního, spojitého typu a jejich důležitých typů rozdělení, zpracování datových souborů kvantitativního a kvalitativního znaku, bodových a intervalových odhadů, nejpoužívanějších parametrických testů a testů dobré shody, jednoduchých a složených indexů, lineárních a nelineárních regresních modelů a analýzy časových řad.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Nabízen zahraničním studentům
Vstupní znalosti
Pro úspěšné zvládnutí jsou požadovány základní znalosti matematické analýzy.
Pravidla hodnocení a ukončení předmětu
ZAKONČENÍ PŘEDMĚTU
Zápočet (max. 40 bodů)- vypracování semestrálních úloh (téma úloh bude upřesněno během semestru).
Zkouška (max. 60 bodů)- je písemná s využitím výpočetní techniky a skládá se ze čtyř výpočtových příkladů a teoretické otázky.
Konečné hodnocení, odpovídající součtu (max. 100 bodů), které sestává:- z dosažených bodů ze semestrálních úloh (max. 40 bodů),- z výsledků řešených příkladů (max. 51 bodů),- z kvality odpovědi na teoretickou otázku (max. 9 bodů).
Konečné hodnocení a jemu odpovídající body:A (100-90), B (89-80), C (79-70), D (69-60), E (59-50), F (49-0).
Účast na přednáškách není povinná, ale doporučuje se. Účast na cvičeních je povinná a kontrolovaná. Omluvená neúčast studenta na cvičení může být nahrazena náhradními úkoly.
ZAKONČENÍ PŘEDMĚTU PRO STUDENTY S INDIVIDUÁLNÍM STUDIEM
Učební cíle
Studenti budou seznámeni se základními pojmy náhodných veličin dikrétního, spojitého typu a jejich důležitých rozdělení, zpracování datových souborů, bodových a intervalových odhadů, testování statistických hypotéz, lineárních a nelineárních regresních modelů a analýzy časových řad. Studenti budou schopni využít příslušné metody při řešení praktických problémů. Po absolvování předmětu budou studenti schopnosti využívat statistické prostředky jako základ datové analýzy v reálném podnikatelském prostředí tak, aby byli schopni obdržet relevantní informace potřebné pro podporu řízení podnikatelských činností.
Základní literatura
Doporučená literatura
Elearning
Zařazení předmětu ve studijních plánech
obor BAK-ESBD , 1 ročník, letní semestr, povinný
obor BAK-Z , 1 ročník, letní semestr, volitelný
Přednáška
Vyučující / Lektor
Osnova
V kurzu jsou vysvětleny základní myšlenky teorie pravděpodobnosti, náhodných veličin, matematické statistiky, korelační analýzy, kategoriální analýzy, regresní analýzy a analýzy časových řad.
Základní tematická náplň:
1. Náhodné veličiny (diskrétní a spojité), jejich číslené charakteristiky (střední hodnota, rozptyl, směrodatná odchylka) a zákony rozdělení (distribuční funkce, pravděpodobnostní funkce, hustota pravděpodobnosti). 2. Speciální typy rozdělení diskrétní a spojité náhodné veličiny (binomické, geometrické, hypergeometrické, normální, exponenciální a logaritmicko-normální rozdělení).3. Dvourozměrný náhodný vektor a jeho charakteristiky (koeficient kovariance a korelace). 4. Základní pojmy matematické statistiky a zpracování malých jednorozměrných datových souborů kvantitativního a kvalitativního znaku.5. Zpracování velkých jednorozměrných datových souborů kvantitativního a kvalitativního znaku.6. Bodové a intervalové odhady parametrů znaku základního souboru.7. Základní pojmy, principy a postupy testování statistických hypotéz. 8. Základní parametrické testy (jednovýběrový a dvouvýběrový t-test, F-test) a testy dobré shody (Pearsonův test, Kolmogorovův-Smirnovův test).9. Základní pojmy z indexní analýzy (intenzitní ukaztel, extenzitní ukazatel, index).10. Jednoduché a složené (individuální a agregátní) indexy.11. Základní pojmy a principy regresní analýzy, metoda nejmenších čtverců a lineární regresní funkce. 12. Nelineární regresní funkce (linearizovatelné a speciální nelinearizovatelné), volba vhodné regresní funkce.13. Základní charakteristiky časových řad (první diference, keoficient růstu), dekompozice časových řad (trendová a sezónní složka časových řad).
Cvičení
Témata cvičení jsou shodná s tématy přednášek.