Detail předmětu

Statistika 2

FP-STA2Ak. rok: 2024/2025

Studenti získají základní znalosti matematické statistiky, kategoriální a korelační analýzy, analýzy rozptylu, regresní analýzy a analýzy časových řad.

Jazyk výuky

čeština

Počet kreditů

Zajišťuje ústav

Vstupní znalosti

Pro úspěšné zvládnutí jsou požadovány základní znalosti teorie pravděpodobnosti a náhodné veličiny.

Pravidla hodnocení a ukončení předmětu

ZAKONČENÍ PŘEDMĚTU

Zápočet (max. 40 bodů)
- vypracování semestrálních úloh (téma úloh bude upřesněno během semestru).

Zkouška (max. 60 bodů)
- je písemná s využitím výpočetní techniky a skládá se ze čtyř výpočtových příkladů a teoretické otázky.

Konečné hodnocení, odpovídající součtu (max. 100 bodů), které sestává:
- z dosažených bodů ze semestrálních úloh (max. 40 bodů),
- z výsledků řešených příkladů (max. 51 bodů),
- z kvality odpovědi na teoretickou otázku (max. 9 bodů).

Konečné hodnocení a jemu odpovídající body:
A (100-90), B (89-80), C (79-70), D (69-60), E (59-50), F (49-0).


Účast na přednáškách není povinná, ale doporučuje se. Účast na cvičeních je povinná a kontrolovaná. Omluvená neúčast studenta na cvičení může být nahrazena náhradními úkoly.

ZAKONČENÍ PŘEDMĚTU PRO STUDENTY S INDIVIDUÁLNÍM STUDIEM

Zápočet (max. 40 bodů)
- vypracování semestrálních úloh (téma úloh bude upřesněno během semestru).

Zkouška (max. 60 bodů)
- je písemná s využitím výpočetní techniky a skládá se ze čtyř výpočtových příkladů a teoretické otázky.

Konečné hodnocení, odpovídající součtu (max. 100 bodů), které sestává:
- z dosažených bodů ze semestrálních úloh (max. 40 bodů),
- z výsledků řešených příkladů (max. 51 bodů),
- z kvality odpovědi na teoretickou otázku (max. 9 bodů).

Konečné hodnocení a jemu odpovídající body:
A (100-90), B (89-80), C (79-70), D (69-60), E (59-50), F (49-0).

Učební cíle

Cílem předmětu je seznámit studenty se základy matematické statistiky, kategoriální a korelační analýzy, analýzy rozptylu, regresní analýzy a analýzy časových řad tak, aby byli schopni tyto znalosti vhodně aplikovat v manažerských, informatických a ekonomických problémech.
Rozvíjet vědomí a schopnosti studentů využívat statistické prostředky jako základ datové analýzy při řízení jednotlivých podnikových procesů.

Základní literatura

KROPÁČ, J. STATISTIKA B. 3. vyd. Brno: Akademické nakladatelství CERM, 2012. 152 s. ISBN 978-80-7204-822-9. (CS)
Studijní materiály vystavené na e-learningu.

Doporučená literatura

BUDÍKOVÁ, M., T. LERCH a Š. MIKOLÁŠ. Základní statistické metody. 1. vyd. Brno: Masarykova univerzita v Brně, 2005. ISBN 80-210-3886-1.
FIELD, A., J. MILES and Z. FIELD. Discovering Statistics Using R. 1 edition. Los Angeles, Calif.: SAGE Publications Ltd., 2012. ISBN 978-1-4462-0046-9.
JAMES, G., D. WITTEN, T. HASTIE a R. TIBSHIRANI. An Introduction to Statistical Learning: with Applications in R. New York: Springer New York, 2014. 426 s. ISBN 978-1-4614-7137-0.

Elearning

Zařazení předmětu ve studijních plánech

  • Program BAK-MIn bakalářský 2 ročník, letní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

V kurzu jsou vysvětleny základní myšlenky a metody matematické statistiky, korelační analýzy, kategoriální analýzy a analýzy časových řad.

Základní tematická náplň:

1. Výběrové charakteristiky
2. Empirická distribuční funkce
3. Zpracování velkých datových souborů
4. Bodové a intervalové odhady
5. Testy statistických hypotéz
6. Korelační analýza
7. Kategoriální analýza
8. Analýza rozptylu
9. Lineární modely
10. Linearizovatelné modely
11. Nelinearizovatelné modely
12. Charakteristiky časových řad
13. Dekompozice časových řad.

Cvičení

26 hod., povinná

Vyučující / Lektor

Osnova

Témata cvičení jsou shodná s tématy přednášek.

Elearning