Detail předmětu
Pravděpodobnost a matematická statistika
ÚSI-DSNA01Ak. rok: 2024/2025
Předmět je určen pro studenty doktorského studia a je zaměřen na stochastické modelování a moderní metody statistické analýzy (pravděpodobnost, náhodné veličiny a vektory, náhodný výběr a jeho realizace, fitování rozdělení pravděpodobnosti a odhady jejich parametrů, testování statistických hypotéz, regresní analýza) pro zpracování statistických souborů získaných při realizaci a vyhodnocování experimentů v rámci vědeckovýzkumné práce studentů.
Jazyk výuky
čeština
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Úvod do počtu pravděpodobnosti a popisná statistika v rozsahu magisterského studia.
Pravidla hodnocení a ukončení předmětu
Zkouška je ve formě předneseného referátu z vybrané oblasti statistických metod anebo vypracováním písemné práce zaměřené na řešení konkrétních úloh.
Výuka probíhá po dohodě s přednášejícím, velká část formou samostudia.
Výuka probíhá po dohodě s přednášejícím, velká část formou samostudia.
Učební cíle
Cílem předmětu je formování stochastického způsobu myšlení studentů a jejich seznámení s moderními stochastickými metodami a indukčními metodami matematické statistiky, včetně možností a uplatnění profesionálního statistického softwaru ve výzkumu.
Po absolvování předmětu bude student schopen:
• Popsat pravděpodobnostní úlohu pomocí množinových operací.
• Vypočítat parametry základních rozdělení náhodných veličin a to jak spojitých, tak i diskrétních.
• Definovat základní statistické charakteristiky.
• Vyjmenovat základní statistické testy.
• Popsat práci se statistickými tabulkami.
• Vybrat vhodnou metodu pro statistické zpracování zadaných dat a provést statistický test.
• Vysvětlit podstatu lineárního programování.
• Převést slovně zadanou slovně vyjádřenou úlohu na kanonický tvar a řešit ji vhodnou metodou.
• Provést analýzu citlivosti geometrickým i algebraickým způsobem.
• Převést zadanou úlohu na duální.
• Vypočítat optimální řešení dopravní úlohy a optimální řešení přiřazovací úlohy.
• Vyjmenovat jednotlivé modely skladových zásob.
Po absolvování předmětu bude student schopen:
• Popsat pravděpodobnostní úlohu pomocí množinových operací.
• Vypočítat parametry základních rozdělení náhodných veličin a to jak spojitých, tak i diskrétních.
• Definovat základní statistické charakteristiky.
• Vyjmenovat základní statistické testy.
• Popsat práci se statistickými tabulkami.
• Vybrat vhodnou metodu pro statistické zpracování zadaných dat a provést statistický test.
• Vysvětlit podstatu lineárního programování.
• Převést slovně zadanou slovně vyjádřenou úlohu na kanonický tvar a řešit ji vhodnou metodou.
• Provést analýzu citlivosti geometrickým i algebraickým způsobem.
• Převést zadanou úlohu na duální.
• Vypočítat optimální řešení dopravní úlohy a optimální řešení přiřazovací úlohy.
• Vyjmenovat jednotlivé modely skladových zásob.
Základní literatura
BAŠTINEC, J., MPSO sbírka příkladů, Brbo 2016, 110 stran (CS)
BAŠTINEC, J., FAJMON, B., KOLÁČEK, J., Pravděpodobnost, statistika a operační výzkum. Brno 2014. 360 stran. (CS)
BAŠTINEC, J., FAJMON, B., KOLÁČEK, J., Pravděpodobnost, statistika a operační výzkum. Brno 2014. 360 stran. (CS)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
24 hod., nepovinná
Vyučující / Lektor
Osnova
1. Pravděpodobnost, náhodná veličina, náhodný vektor.
2. Rozdělení pravděpodobnosti pro aplikace.
3. Průzkumová analýza pro zpracování statistických souborů.
4. Náhodný výběr - model a vlastnosti.
5. Fitování rozdělení pravděpodobnosti.
6. Odhady parametrů rozdělení pravděpodobnosti.
7. Testování statistických hypotéz o parametrech a rozděleních.
8. Neparametrické testy.
9. Základy lineární regresní analýzy.
10. Úvod do analýzy rozptylu.
11. Úvod do kategoriální analýzy.
12. Statistický software - vlastnosti a možnosti použití.
2. Rozdělení pravděpodobnosti pro aplikace.
3. Průzkumová analýza pro zpracování statistických souborů.
4. Náhodný výběr - model a vlastnosti.
5. Fitování rozdělení pravděpodobnosti.
6. Odhady parametrů rozdělení pravděpodobnosti.
7. Testování statistických hypotéz o parametrech a rozděleních.
8. Neparametrické testy.
9. Základy lineární regresní analýzy.
10. Úvod do analýzy rozptylu.
11. Úvod do kategoriální analýzy.
12. Statistický software - vlastnosti a možnosti použití.
Konzultace v kombinovaném studiu
6 hod., nepovinná
Vyučující / Lektor