Detail předmětu
Chytré technologie a materiály v mechatronice
FSI-RAE-AAk. rok: 2025/2026
Předmět seznamuje studenty s moderními technologiemi a materiály, především alternativními možnostmi napájení moderních bezdrátových aplikací a využití těchto systémů a materiálů v konceptu Průmyslu 4.0. V rámci předmětu se studenti seznámí se základními principy a alternativami napájení a snímaní s využitím projevů okolní energie (Energy Harvesting). Jako energy harvesting zdroje jsou představeny solární, termoelektrické a elektromechanické generátory. Podstatná část předmětu se věnuje tzv. SMART materiálům, metamateriálům a jejich technickým aplikacím. Hlavní náplní předmětu je studium efektivní elektromechanické přeměny mechanické energie vibrací, rázů, deformace a lidského chování s využitím simulačního modelování „Energy Harvesting“ systémů.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Nabízen zahraničním studentům
Vstupní znalosti
Pravidla hodnocení a ukončení předmětu
Účast na cvičení je povinná. Nepřítomnost se nahrazuje zvláštním zadáním podle pokynů cvičícího.
Učební cíle
Předmět se zabývá přehledem nezávislých způsobů generování elektrické energie z okolí pro autonomní napájení bezdrátových senzorů a jiné nízkovýkonové elektroniky. Studenti budou schopni systémové analýzy kyber-fyzikálních systémů a zdrojů okolní energie pro napájení/snímání konkrétní technické aplikace.
Základní literatura
Fiala, P., Kadlecová, E.: Modelování elektromagnetických polí, FEKT VUT v Brně, 2005. (CS)
Grepl, R.: Modelování mechatronických systémů v Matlab/SimMechanics, BEN, 2007. (CS)
Olfa Kanoun: Energy Harvesting for Wireless Sensor Networks: Technology, Components and System Design, De Gruyter Oldenbourg, 2018. (EN)
Shashank Priya, Daniel J. Inman: Energy Harvesting Technologies, Springer US, 2009 (EN)
Doporučená literatura
Mukherjee, S., et al.: AmIware Hardware Technology Drivers of Ambient Intelligence, Philips Research Book Series Vol. 5, Springer Netherlands, 2006. (EN)
Tom J. Kaźmierski (Editor), Steve Beeby (Editor): Energy Harvesting Systems: Principles, Modeling and Applications, Springer, 2011. (EN)
Zařazení předmětu ve studijních plánech
- Program BPC-EMU bakalářský 3 ročník, zimní semestr, povinně volitelný
- Program N-IMB-P magisterský navazující
specializace IME , 2 ročník, zimní semestr, povinně volitelný
specializace BIO , 2 ročník, zimní semestr, povinně volitelný - Program N-MET-P magisterský navazující 2 ročník, zimní semestr, povinně volitelný
- Program N-AIŘ-P magisterský navazující 2 ročník, zimní semestr, volitelný
- Program N-ENG-Z magisterský navazující 1 ročník, zimní semestr, doporučený kurs
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Představení aplikací internetu věcí a „Energy Harvesting“ technologií
3. Fotovoltaické články
4. Termoelektrické generátory
5. Elektromechanická přeměna – základní principy
6. Elektromechanická přeměna – energetická analýza generování energie z vibrací
7. Energy harvesting generátor jako mechatronická soustava
8. Elektromagnetické zdroje energie
9. Chytré materiály a piezoelektrické zdroje energie
10. Chování piezoelektrických materiálů v technických soustavách
11. Akumulace energie, Elektronika - Power management
12. Využití "energy harvesting" technologií v technické praxi
13. MEMS
Laboratorní cvičení
Vyučující / Lektor
Osnova
2. Modely solárních článků a termogenerátorů
3. Model termoelektrického modulu
4. Měření a analýza vibrací strojů z pohledu energy harvesting
5. Mechanická energie jako autonomní zdroj
6. Modely elektromagnetické přeměny
7. Modelování magnetického pole permanentních magnetů
8. Simulační model komplexního elektromagnetického generátoru
9. Měření energy harvesting generátoru
10. Modelování piezoelektrických elementů a základní analýzy
11. Modelování piezo-generátoru
12. Model výkonové elektroniky
13. Prezentace závěrečných prací studentů