Detail předmětu

Selected Parts from Mathematics II

FEKT-BPA-VPMAk. rok: 2025/2026

Obsahem předmětu jsou základy výpočtu nevlastního vícerozměrného integrálu a základy řešení lineárních diferenciálních rovnic užitím delta funkce a váhové funkce.
Po seznámení se základními pojmy je hlavní pozornost zaměřena na výpočty nevlastních vícerozměrných integrálů na neohraničených množinách a z neohraničených funkcí.
V části lineárních diferenciálních rovnic se probírají metody řešení lineárních diferenciálních rovnic a soustav lineárních rovnic a to eliminační metoda, metoda vlastních čísel a vektorů, metoda variace konstant, metoda neurčitých koeficientů včetně stability řešení.

Jazyk výuky

angličtina

Počet kreditů

5

Zajišťuje ústav

Nabízen zahraničním studentům

Všech fakult

Vstupní znalosti

Student by měl být schopen aplikovat znalosti z analytické geometrie a matematické analýzy na úrovni středoškolského studia: umět vysvětlit pojmy obecné a parametrické rovnice křivek a ploch a elementárních funkcí.
Z předmětů BMA1, BMA2 jsou požadovány základní znalosti diferenciálního počtu funkce jedné proměnné a více proměnných, integrálního počtu funkce jedné proměnné a základní metody řešení lineárních diferenciálních rovnic s konstantními koeficienty. Především by student měl umět derivovat (včetně parciálních derivací) a integrovat.

Pravidla hodnocení a ukončení předmětu

Práce během semestru je hodnocena maximálně 30 body (tyto body je možné získat za písemky a domácí úkoly).
Závěrečná písemná zkouška je hodnocena maximálně 70 body a skládá se ze 7 příkladů (1 z nevlastního vícerozměrného integrálu (10 bodů), 3 z aplikací váhové a delta funce ( 3 x 10 bodů) a 3 z analytických metod řešení diferenciálních rovnic (3 x 10 bodů))



Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Učební cíle

Cílem předmětu je seznámit studenty se základy nevlastních vícerozměrných integrálů, systémů diferenciálních rovnic včetně vyšetřování stability řešení diferenciálních rovnic a aplikací speciálních funkcí při řešení dynamických systémů.
Studenti by po absolvování kursu měli být schopni :
- vypočítat nevlastní integrál na neohraničených množinách a z neohraničených funkcí.
- aplikovat váhovou funkci a delta funkci na řešení lineárních diferenciálních rovnic.
- zvolit optimální metodu řešení pro danou diferenciální rovnici
- vyšetřit stabilitu řešení systémů diferenciálních rovnic.

Základní literatura

HLAVIČKOVÁ, I., KOLÁŘOVÁ, E., ŠMARDA,Z., Selected Parts from Mathematics II, textbook FEEC BUT 2014 (EN)

Doporučená literatura

GARNER, L.E.: Calculus and Analytical Geometry. Brigham Young University, Dellen publishing Company, San Francisco,1988, ISBN 0-02-340590-2. (EN)

Zařazení předmětu ve studijních plánech

  • Program BPA-ELE bakalářský

    specializace BPA-ECT , 0 ročník, letní semestr, volitelný
    specializace BPA-PSA , 0 ročník, letní semestr, volitelný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

  1. Impulzní funkce,  řešení  diferenciálních  rovnic užitím  váhové  funkce
  2. Systémy diferenciálních  rovnic, eliminační  metoda
  3. Metoda variace konstant,  metoda vlastních  čísell  a vlastních  vektorů
  4. Metoda neurčitých  koeficientů
  5.  Diferenciální  transformační metoda (DTM) 
  6.  DTM  pro  systémy  diferenciálních rovnic , zpožděné  systémy.
  7. Diferenční  rovnice,  diference,  sumace.
  8. Řešení  lineárních homogenních  i  nehomogenních  diferenčních  rovnic
  9. Gama funkce, řešení speciálních  nelineárních  diferenčních rovnic 
  10. Řešení systémů lineárních  diferenčních rovnic
  11.  Frakcionální počet,  Mittag-Lefflerovy  funkce
  12. Řešení  frakcionálních diferenciálních  rovnic  ve smyslu  Caputovy  a Riemann-Liouvilleovy  derivace
  13. Řešení  frakcionálních  systémů  diferencionálních  rovnic,  impulzní  charakteristiky
   

Cvičení odborného základu

12 hod., povinná

Vyučující / Lektor

Osnova

  1. Impulzní funkce,  řešení  diferenciálních  rovnic užitím  váhové  funkce
  2. Systémy diferenciálních  rovnic, eliminační  metoda
  3. Metoda variace konstant,  metoda vlastních  čísell  a vlastních  vektorů
  4. Metoda neurčitých  koeficientů
  5.  Diferenciální  transformační metoda (DTM) 
  6.  DTM  pro  systémy  diferenciálních rovnic , zpožděné  systémy.
  7. Diferenční  rovnice,  diference,  sumace.
  8. Řešení  lineárních homogenních  i  nehomogenních  diferenčních  rovnic
  9. Gama funkce, řešení speciálních  nelineárních  diferenčních rovnic 
  10. Řešení systémů lineárních  diferenčních rovnic
  11.  Frakcionální počet,  Mittag-Lefflerovy  funkce
  12. Řešení  frakcionálních diferenciálních  rovnic  ve smyslu  Caputovy  a Riemann-Liouvilleovy  derivace
  13. Řešení  frakcionálních  systémů  diferencionálních  rovnic,  impulzní  charakteristiky
   

Cvičení na počítači

14 hod., povinná

Vyučující / Lektor

Osnova

  1. Impulzní funkce,  řešení  diferenciálních  rovnic užitím  váhové  funkce
  2. Systémy diferenciálních  rovnic, eliminační  metoda
  3. Metoda variace konstant,  metoda vlastních  čísell  a vlastních  vektorů
  4. Metoda neurčitých  koeficientů
  5.  Diferenciální  transformační metoda (DTM) 
  6.  DTM  pro  systémy  diferenciálních rovnic , zpožděné  systémy.
  7. Diferenční  rovnice,  diference,  sumace.
  8. Řešení  lineárních homogenních  i  nehomogenních  diferenčních  rovnic
  9. Gama funkce, řešení speciálních  nelineárních  diferenčních rovnic 
  10. Řešení systémů lineárních  diferenčních rovnic
  11.  Frakcionální počet,  Mittag-Lefflerovy  funkce
  12. Řešení  frakcionálních diferenciálních  rovnic  ve smyslu  Caputovy  a Riemann-Liouvilleovy  derivace
  13. Řešení  frakcionálních  systémů  diferencionálních  rovnic,  impulzní  charakteristiky