Detail předmětu

Diferenciální rovnice a jejich použití v elektrotechnice.

FEKT-MKC-DREAk. rok: 2025/2026

Předmět je věnován některým důležitým okruhům diferenciálních rovnic a to jak obyčejných diferenciálních rovnic, tak i parciálních diferenciálních rovnic, které nebyly v bakalářském studiu probírány. Z obyčejných diferenciálních rovnic jde například o exaktní rovnice, které jsou souhrnných typem velkého množství rovnic. Je prohloubeno učivo o systémech lineárních diferenciálních rovnic včetně autonomních. Pro rovnice s konstantními koeficienty je uvedena metoda řešení pomocí exponenciály matice. Z aplikačního hlediska jsou důležité i další typy diferenciálních rovnic, kterým je v předmětu věnována pozornost. Mezi ně patří např. Besselovu rovnice a Laplaceovu rovnice. Jedním z centrálních pojmů v aplikacích diferenciálních rovnic je pojem stability, která je v kurzu probírána. Jsou uvedeny některé metody zjišťování stability, pro rovnice s konstantními koeficienty jde např. o Hurwitzovo kriterium a Michajlovovo kriterium. Je zmíněna
také metoda Ljapunovovských funkcí, která patří k základním ve vyšetřování stability. Je dána úplná klasifikace rovinných lineárních systémů s konstantními koeficienty ve fázové rovine. Parciální diferenciální rovnice často vyjadřují matematické modely mnoha technických a inženýrských jevů. Jsou uvedeny aplikace základních metod řešení (Fourierova metoda, D'Alembertova metoda) na vlnové rovnice, rovnice vedení tepla a Laplaceovu rovnici. 

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Vstupní znalosti

Jsou požadovány znalosti na úrovni bakalářského studia.

Pravidla hodnocení a ukončení předmětu

Hodnoceny budou schopnosti řešit některé vybrané typy diferenciálních rovnic a také schopnosti správného použití teoretických poznatků, které úspěšné řešení podmiňují.
Výsledké hodnocení (zkouška) je bodové (0-100 bodů), ze cvičení lze uznat maximálně 30 bodů. Závěrečná zkouška je písemná a lze za ni získat maximálně 70 bodů.

Nutnými podmínkami k udělení zápočtu jsou - pravidelná účast na cvičeních, nenulové hodnocení půlsemestrální písemné práce. Předmět je zakončen  závěrečným písemný testem. 

Učební cíle

Diferenciální rovnice jsou páteří mnoha oblastí inženýrských věd. Cílem kursu je vytvořit základní představy o vlastnostech řešení diferenciálních rovnic, vyložit základní techniky a metody jejich řešení. Úkolem kursu je nejenom seznámit s některými přesnými metodami řešení diferenciálních rovnic (např. s metodou řešení lineárních systémů s konstantními koeficienty pomocí exponenciály matice, s metodami pro řešení některých typů parciálních diferenciálních rovnic - Fourierova metoda, D'Alembertova metoda), ale také ukázat na možnosti získání přibližných informací o vlastnostech řešení (např.při zjišťování stability řešení). Metody jsou ilustrovány na konkrétních příkladech z elektrotechniky.
Schopnost orientace v základních pojmech a metodách diferenciálních rovnic. Řešení vybraných úloh z oblastí obyčejných a parciálních diferenciálních rovnic, uvedených v anotaci, pomocí aplikace těchto metod. Řešení úloh využitím moderního matematického software. Zásadními výstupy jsou:
1) Umět explicitně řešit základní typy obyčejných diferenciálních rovnic prvního řádu (separované, lineární, exaktní, Bernoulliova, Cleiro).
2) Schopnost rozboru počáteční úlohy a určení její řešitelnosti.
3) Konstrukce řešení pomocí metody postupných aproximací.
4) Modelování obvodů pomocí lineárních rovnic vyššího řádu a jejich řešení.
5) Řešení systémů lineárních obyčejných diferenciálních rovnic, pokud je znám fundamentální system řešení.
6) Řešení homogenních systémů lineárních obyčejných diferenciálních rovnic s konstantními koeficienty metodou vlastních vektorů a metodou exponenciály matice.
7) Konstrukce partikulárních řešení nehomogenních lineárních diferenciálních systémů.
8) Zjišťování stability lineárních systémů diferenciálních rovnic s proměnnými koeficienty a s konstantími koeficienty (spravné použití kriterií stability).
9) Řešení jednoduchých parciálních diferenciálních rovnic prvního řádu.
10) Využití metody charakteristik a prvních integrálů při řešení parciálních diferenciálních rovnic prvního řádu.
11) Aplikace D’Alembertovy metody na řešení lineárních parciálních diferenciálních rovnic druhého řádu.
12) Využití Fourierovy metody při řešení lineárních parciálních diferenciálních rovnic druhého řádu.
13) Podrobná konstrukce řešení vlnové rovnice a rovnice vedení tepla.
14) Laplaceova parciální diferenciální rovnic a její řešení.
15) Formulace Dirichletovy úlohy pro lineární parciální rovnice druhého řádu a jejich řešení.

Studijní opory

Viz položka "Literatura" 

Základní literatura

DIBLÍK, J., BAŠTINEC, J., HLAVIČKOVÁ, I. Diferenciální rovnice a jejich použití v elektrotechnice. 1 vyd. Brno: FEKT VUT, 2005. s. 1 - 174 . ISBN MAT502 (CS)
DIBLÍK, J., BAŠTINEC, J., HLAVIČKOVÁ, I., ŠMARDA, Z. Diferenciální rovnice a jejich použití v elektrotechnice, ESF, OPVK, FEKT, 2013, 1-225 (CS)
DIBLÍK, J., PŘIBYL, O., Obyčejné diferenciální rovnice, Akademické vydavatelství Cerm, Brno, 150 str., 2004 (CS)
DIBLÍK, J., RŮŽIČKOVÁ, M., Obyčajné diferenciálne rovnice, EDIS Žilina, ŽU, 2008 (CS)

Doporučená literatura

AMARANATH, T., An Elementary Course in Partial Differential Equations, Narosa Publ. House, 1997. (EN)
ANGOT, A., Užitá matematika pro elektrotechnické inženýry, SNTL, SVTL, 1972. (CS)
EPSTEIN, M., Partial Differential Equations, Mathematical Techniques for Engineers, Springer, 2017 (k dispozici ve fakultní knihovně) (EN)
KESKIN, A. Ümit, Ordinary Differential Equations for Engineers, Problems with MATLAB Solutions, Springer, 2019 (k dispozici ve fakultní knihovně) (EN)
MAYER, D., Úvod do teorie elektrických obvodů, SNTL, ALFA, 1978. (CS)
Wei-Chau Xie, Differential Equations for Engineers, Cambridge Univerzity Press, 2014 (k dispozici ve fakultní knihovně) (EN)

Zařazení předmětu ve studijních plánech

  • Program MKC-EEN magisterský navazující 1 ročník, zimní semestr, povinně volitelný
  • Program MKC-EKT magisterský navazující 1 ročník, zimní semestr, povinně volitelný
  • Program MKC-SVE magisterský navazující 1 ročník, zimní semestr, povinně volitelný
  • Program MKC-TIT magisterský navazující 1 ročník, zimní semestr, povinně volitelný

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Vyučující / Lektor

Osnova

1) Řešení základních typů obyčejných diferenciálních rovnic prvního řádu (rovmice separovaná, lineární, exaktní, Bernoulliova, Cleiro).
2) Rozboru počáteční úlohy a určení její řešitelnosti.
3) Konstrukce řešení pomocí metody postupných aproximací.
4) Modelování obvodů pomocí lineárních rovnic vyššího řádu a jejich řešení.
5) Řešení systémů lineárních obyčejných diferenciálních rovnic, pokud je znám fundamentální systém řešení.

6) Řešení homogenních systémů lineárních obyčejných diferenciálních rovnic s konstantními koeficienty metodou vlastních vektorů a metodou exponenciály matice.
7) Konstrukce partikulárních řešení nehomogenních lineárních diferenciálních systémů.
8) Stabilita lineárních systémů diferenciálních rovnic s proměnnými koeficienty a s konstantními koeficienty (použití kritérií stability).
9) Řešení jednoduchých parciálních diferenciálních rovnic prvního řádu.
10) Metoda charakteristik a prvních integrálů při řešení parciálních diferenciálních rovnic prvního řádu.
11) Aplikace D’Alembertovy metody na řešení lineárních parciálních diferenciálních rovnic druhého řádu.
12) Využití Fourierovy metody při řešení lineárních parciálních diferenciálních rovnic druhého řádu.
13) Konstrukce řešení vlnové rovnice a rovnice vedení tepla.
14) Laplaceova parciální diferenciální rovnic a její řešení.
15) Formulace Dirichletovy úlohy pro lineární parciální rovnice druhého řádu a jejich řešení.  

 

Cvičení na počítači

13 hod., nepovinná

Vyučující / Lektor

Osnova

1) Řešení základních typů obyčejných diferenciálních rovnic prvního řádu (rovmice separovaná, lineární, exaktní, Bernoulliova, Cleiro).
2) Rozboru počáteční úlohy a určení její řešitelnosti.
3) Konstrukce řešení pomocí metody postupných aproximací.
4) Modelování obvodů pomocí lineárních rovnic vyššího řádu a jejich řešení.
5) Řešení systémů lineárních obyčejných diferenciálních rovnic, pokud je znám fundamentální systém řešení.

6) Řešení homogenních systémů lineárních obyčejných diferenciálních rovnic s konstantními koeficienty metodou vlastních vektorů a metodou exponenciály matice.
7) Konstrukce partikulárních řešení nehomogenních lineárních diferenciálních systémů.
8) Stabilita lineárních systémů diferenciálních rovnic s proměnnými koeficienty a s konstantními koeficienty (použití kritérií stability).
9) Řešení jednoduchých parciálních diferenciálních rovnic prvního řádu.
10) Metoda charakteristik a prvních integrálů při řešení parciálních diferenciálních rovnic prvního řádu.
11) Aplikace D’Alembertovy metody na řešení lineárních parciálních diferenciálních rovnic druhého řádu.
12) Využití Fourierovy metody při řešení lineárních parciálních diferenciálních rovnic druhého řádu.
13) Konstrukce řešení vlnové rovnice a rovnice vedení tepla.
14) Laplaceova parciální diferenciální rovnic a její řešení.
15) Formulace Dirichletovy úlohy pro lineární parciální rovnice druhého řádu a jejich řešení.  

 

Elektronické učební texty

Diblík J., Baštinec J. Hlavičková I., Šmarda Z.,Diferenciální rovnice a jejich použití v~elektrotechnice
Mdre.pdf 1.93 MB
MDRE.pdf 2.47 MB
Mdre-OPVK2.pdf 2.05 MB
dre.pdf 2.32 MB