Detail předmětu
Náhodné procesy
FEKT-MPC-NPRAk. rok: 2025/2026
Předmět obsahuje úvod do teorie náhodných procesů: typy. Proto je v jeho úvodu zařazeno nejdříve opakování potřebného matematického aparátu (matice, determinanty, řešení rovnic, rozklad na parciální zlomky, pravděpodobnost). Poté je budována teorie náhodných procesů, kde se věnujeme Markovským procesům a řetězcům, a to jak diskrétním, tak i spojitým. Je provedena základní klasifikace stavů a studenti jsou seznámeni se způsoby jejich určení.Velká pozornost je věnována jejich asymptotickým vlastnostem. V další části se zavádí ocenění přechodů mezi jednotlivými stavy a studenti jsou seznámeni s rozhodovacími procesy a s možnostmi jejich řešení. V závěru se zmíníme o skrytých Markovských procesech a možnostech jejich řešení.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Pravidla hodnocení a ukončení předmětu
až 30 bodů za počítačová cvičení, které mohou získat za písemný test ( max. 20 bodů) a až 10 bodů za hodnocení aktivity na cvičeních,
až 70 bodů za písemnou semestrální zkoušku. Zadání pro zkoušku obsahuje teoretické i početní úlohy, které slouží pro ověření orientace studenta v problematice náhodných procesů a jejich aplikací.
Počítačová cvičení jsou povinná. Řádně omluvenou neúčast lze nahradit zpracováním domácí úlohy, která je zaměřena na problematiku probíranou ve zameškaném cvičení.
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Termín konání písemného testu je vyhlašován po dohodě se studenty minimálně týden před jeho konáním. Náhradní termín pro řádně omluvené studenty je obvykle v zápočtovém týdnu.
Učební cíle
Absolvent předmětu je schopen:
• Popsat základní vlastnosti náhodných procesů.
• Vysvětlit základní Markovskou vlastnost.
• Sestavit matici Markovského řetezce.
• Vysvětlit postup výpočtu mocniny matice.
• Provést klasifikaci stavů Markovského řetezce v diskrétním i spojitém případě.
• Provést analýzu Markovského řetezce pomocí Z-transformace v diskrétním případě a pomocí Laplaceovy transformace ve spojitém případě.
• Vysvětli postup řešení u rozhodovacích úloh.
• Popsat postup řešení při rozhodovacích úloze s alternativami.
• Diskutovat o rozdílech mezi Markovskými řetězci a skrytými Markovskými řetězci.
Základní literatura
Prášková Z., Lachout P., Základy náhodných procesů I., MatfyzPress (CS)
Zařazení předmětu ve studijních plánech
- Program MPC-BTB magisterský navazující 1 ročník, zimní semestr, povinně volitelný
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
2. Náhodné procesy, charakteristiky náhodných procesů.
3. Markovovy řetězce s diskrétním časem, Chapman-Kolmogorovy rovnice.
4. Homogenní Markovovy řetězce.
5. Regulární Markovovy řetězce.
6. Absorpční řetězce.
7. Z-transformace, analýza Markovových řetězců.
8. Markovovy řetězce se spojitým časem.
9. Poissonův proces.
10. Chapman-Kolmogorovy diferenciální rovnice.
11. Markovovy rozhodovací procesy.
12. Asymptotické vlastnosti Markovových řetězců.
13. Rozhodovací proces s alternativami.
Cvičení s počítačovou podporou
Vyučující / Lektor
Osnova
2. Analýza náhodných veličin.
3. Výpočty charakteristik náhodných procesů.
4. Markovovy řetězce s diskrétním časem- aplikace.
5. Aplikace a řešení Chapman-Kolmogorových rovnic.
6. Homogenní a regulární Markovovy řetězce - aplikace.
7. Aplikace absorpčních řetězců.
8. Analýza Markovových řetězců pomocí Z-transformace.
9. Charakteristiky Markovových řetězců se spojitým časem.
10. Aplikace Poissonova procesu.
11. Aplikace a řešení Chapman-Kolmogorových diferenciálních rovnic.
12. Analýza Markovových rozhodovacích procesů.
13. Asymptotická analýza Markovových řetězců.