Detail předmětu

Statistika a pravděpodobnost

FSI-CS1Ak. rok: 2025/2026

Předmět je zaměřen na seznámení studentů s metodami popisné statistiky, základy teorie pravděpodobnosti (náhodné jevy, pravděpodobnost, náhodná veličina, náhodný vektor) a
matematické statistiky (náhodný výběr, odhady parametrů, testování statistických hypotéz, lineární regresní analýza). Úlohy na procvičení látky jsou orientovány na praktické aplikace ve strojírenských oborech.

Jazyk výuky

čeština

Počet kreditů

5

Zajišťuje ústav

Vstupní znalosti

Základy diferenciálního a integrálního počtu.

Pravidla hodnocení a ukončení předmětu

Podmínky udělení zápočtu: aktivní účast ve cvičeních, zvládnutí celé látky, klasifikace dostatečně kontrolní práce a uznání písemné semestrální práce. Zkouška (písemná forma): praktická část (2 příklady z teorie pravděpodobnosti: pravděpodobnost a její vlastnosti, náhodná veličina, rozdělení Bi,H,Po,N a diskrétní náhodný vektor; 2 příklady z matematické statistiky: bodové a intervalové odhady parametrů, testy hypotéz o rozděleních a parametrech, lineární regresní model) s vlastním přehledem vzorců; teoretická část (4 otázky na základní pojmy, jejich vlastnosti, význam a praktické užití); hodnocení: každý příklad 0 až 20 bodů a každá teoretická otázka 0 až 5 bodů; klasifikace podle celkového
součtu bodů: výborně (90 až 100 bodů), velmi dobře (80 až 89 bodů), dobře (70 až 79 bodů), uspokojivě (60 až 69 bodů), dostatečně (50 až 59 bodů), nevyhovující(0 až 49 bodů).


Cvičení je kontrolované a o náhradě zameškané výuky rozhoduje učitel cvičení.

Učební cíle

Seznámení studentů se základními pojmy, metodami a postupy teorie pravděpodobnosti, popisné statistiky a matematické statistiky. Formování stochastického způsobu myšlení studentů pro modelování reálných jevů a procesů ve strojírenských oborech.
Studenti získají potřebné znalosti z teorie pravděpodobnosti, popisné statistiky a matematické statistiky, které jim umožní pochopit a aplikovat stochastické modely technických jevů a procesů, založené na těchto metodách.

Základní literatura

Anděl, J.: Statistické metody. Praha : Matfyzpress, 1993.
Montgomery, D. C. - Renger, G.: Probability and Statistics. New York : John Wiley & Sons, 2017.
Sprinthall, R. C.: Basic Statistical Analysis. Boston : Allyn and Bacon, 1997.

Doporučená literatura

Cyhelský, L. - Kahounová, J. - Hindls, R.: Elementární statistická analýza. Praha : Management Press, 1996.
Karpíšek, Z.: Matematika IV. Statistika a pravděpodobnost. Brno : FSI VUT v CERM, 2003.
Seger, J. - Hindls, R.: Statistické metody v tržním hospodářství. Praha : Victoria Publishing, 1995.

Zařazení předmětu ve studijních plánech

  • Program B-ENE-P bakalářský 2 ročník, zimní semestr, povinný

  • Program B-STR-P bakalářský

    specializace AIŘ , 2 ročník, zimní semestr, povinný
    specializace KSB , 2 ročník, zimní semestr, povinný
    specializace SSZ , 2 ročník, zimní semestr, povinný
    specializace STG , 2 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Náhodné jevy a jejich pravděpodobnost.
2. Podmíněná pravděpodobnost. Nezávislé jevy.
3. Náhodná veličina, druhy, funkční charakteristiky.
4. Číselné charakteristiky náhodné veličiny.
5. Základní diskrétní rozdělení Bi, H, Po (vlastnosti a užití).
6. Základní spojitá rozdělení R, N (vlastnosti a užití).
7. Dvourozměrný diskrétní náhodný vektor, druhy, funkční a číselné charakteristiky.
8. Náhodný výběr, výběrové charakteristiky (vlastnosti, výběr z N).
9. Odhady parametrů (bodové a intervalové odhady parametrů N a Bi).
10. Testování statistických hypotéz (druhy, základní pojmy, test).
11. Testy hypotéz o parametrech N, Bi a testy rozdělení.
12. Základy regresní analýzy.
13. Lineární regresní model, odhady a testy hypotéz.

Cvičení s počítačovou podporou

26 hod., povinná

Vyučující / Lektor

Osnova

1. Seznámeni se statistickým softwarem
2. Popisná statistika (jednorozměrný statistický soubor, dvourozměrný statistický soubor).
3. Pravděpodobnost
4. Náhodná veličina
5. Náhodný vektor
6. Základní rozdělení pravděpodobnosti(Bi, H, Po, N).
7. Bodové a intervalové odhady parametrů N a Bi.
8. Testy hypotéz o parametrech N a Bi - dokončení. Testy rozdělení.
9. Lineární regrese (přímka), odhady, testy a graf.