Detail předmětu

Obyčejné diferenciální rovnice v mechanice

FSI-SRMAk. rok: 2025/2026

Předmět seznámí studenty se základy kvalitativní teorie obyčejných diferenciálních rovnic, zejména s otázkami existence, jednoznačnosti a prodloužitelnosti řešení počátečních úloh pro nelineární neautonomní soustavy diferenciálních rovnic prvního řádu. V rámci tohoto předmětu budou probrány také otázky stability řešení neautonomních soustav a jejich speciálních případů a základy teorie dynamických systémů. Budou také připomenuty základy klasické mechaniky (kinematika a dynamika bodových těles a jejich soustav, Lagrangeovy rovnice 2. druhu) potřebné k sestavení pohybových rovnic jednodušších mechanických soustav. Vybudovaný matematický aparát bude použit v analýze obyčejných diferenciálních rovnic objevujících se ve vybraných matematických modelech z mechaniky, přičemž v jejich analýze bude kladen důraz na přesnou matematickou argumentaci. Jedná se zejména o modely kmitání lineárních a nelineárních mechanických soustav.

Jazyk výuky

čeština

Počet kreditů

6

Zajišťuje ústav

Vstupní znalosti

V oblasti matematiky: Lineární algebra, diferenciální počet funkcí jedné a více proměnných, integrální počet funkcí jedné proměnné, analytické metody řešení lineárních obyčejných diferenciálních rovnic a jejich soustav.

V oblasti mechaniky: Vektorové vyjádření sil a momentů. Principy uvolňování těles.

Pravidla hodnocení a ukončení předmětu

Účast na přednáškách je doporučená, účast na cvičeních je povinná a kontrolovaná. Stanovení způsobů náhrady zmeškané výuky je v kompetenci vyučujícího.

Podmínky udělení zápočtu: Aktivní účast ve cvičeních.

Zkouška: Bude probíhat ústní formou, prověřuje znalosti definic, vět a vybraných důkazů v oblasti matematiky, základních pojmů a zákonů v oblasti mechaniky a schopnost užití teoretického aparátu v daných úlohach. Detailní informace budou oznámeny na konci semestru.

Učební cíle

Cíl kurzu: Cílem předmětu je seznámit studenty se základy kvalitativní teorie obyčejných diferenciálních rovnic, dynamických systémů a analytické mechaniky. Úkolem je také studentům ukázat použití teoretických výsledků v analýze diferenciálních rovnic objevujících se v matematických modelech v mechanice, přičemž vhodně interpretovat získané poznatky, avšak dbát na korektní matematickou argumentaci.

Získané znalosti a dovednosti: Po absolvování předmětu studenti zvládnou použít teoretický matematický aparát v analýze diferenciálních rovnic objevujících se ve vybraných matematických modelech v mechanice. Budou schopni sestavit pohybové rovnice jednodušších mechanických soustav a posoudit otázku stability a typu ekvilibrií získaných obecně nelineárních autonomních soustav diferenciálních rovnic. Na vybraných úlohách z mechaniky i jiných disciplín se seznámí s možnostmi matematického modelování pomocí obyčejných diferenciálních rovnic. 

Základní literatura

ANDRONOV, A. A.; LEONTOVICH, E. A.; GORDON, I. I. a MAIER, A. G. Qualitative Theory of Second-order Dynamic Systems. New York: John Wiley, 1973. ISBN 0470031956. (EN)
CODDINGTON, E. A. a LEVINSON, N. Theory of ordinary differential equations. Malabar: Krieger Publishing Company, 1984. ISBN 0-89874-755-4. (EN)
DEMIDOVICH B. P. Lectures on the mathematical theory of stability. Izdat. "Nauka'', Moscow 1967. (RU)
HARTMAN, P. Ordinary differential equations. Philadelphia: SIAM, 2002. ISBN 0-89871-510-5. (EN)
KRATOCHVÍL C. a SLAVÍK, J. Mechanika těles: dynamika. Brno: Akademické nakladatelství CERM, 2007. ISBN 978-80-214-3446-2. (CS)
LEVI M.Classical Mechanics With Calculus of Variations and Optimal Control: An Intuitive Introduction.Student Mathematical Library 69, American Mathematical Society, 2014.ISBN 978-0-8218-9138-4. (EN)
PERKO, L. Differential equations and dynamical systems. New York: Springer Science+Business Media, 2001. ISBN 0-387-95116-4.ew York, 2001, ISBN 0-387-95116-4. (EN)

Doporučená literatura

CODDINGTON, E. A. a LEVINSON, N. Theory of ordinary differential equations. Malabar: Krieger Publishing Company, 1984. ISBN 0-89874-755-4. (EN)
HARTMAN, P. Ordinary differential equations. Philadelphia: SIAM, 2002. ISBN 0-89871-510-5. (EN)
KALAS J. a RÁB M. Obyčejné diferenciální rovnice. Masarykova univerzita, Brno, 1995. ISBN 80-210-1130-0. (CS)
KRATOCHVÍL C. a SLAVÍK, J. Mechanika těles: dynamika. Brno: Akademické nakladatelství CERM, 2007. ISBN 978-80-214-3446-2. (CS)
PERKO, L. Differential equations and dynamical systems. New York: Springer Science+Business Media, 2001. ISBN 0-387-95116-4.ew York, 2001, ISBN 0-387-95116-4. (EN)

Zařazení předmětu ve studijních plánech

  • Program N-MAI-P magisterský navazující 2 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Vyučující / Lektor

Osnova

Lineární soustavy obyčejných diferenciálních rovnic (ODR), stabilita, základy Floquetovy teorie.
Počáteční úloha pro nelineární soustavy ODR: Existence, jednoznačnost a prodloužitelnost řešení.
Struktura množiny řešení počáteční úlohy pro nelineární soustavy ODR.
Stabilita řešení kvazilineárních soustav. Přímá Lyapunovova metoda.
Autonomní soustavy ODR: Fázová trajektorie, fázový portrét, ekvilibrium a jeho stabilita, stabilita periodických řešení.
Planární nelineární autonomní soustavy ODR: Stabilita a klasifikace ekvilibrií, linearizace.
Hamiltonovské a gradientní systémy.
Nelineární autonomní diferenciální rovnice 2. řádu.
Základní pojmy a principy kinematiky a dynamiky pohybu bodového tělesa a soustav bodových těles.
Základy analytické mechaniky, Lagrangeovy rovnice 2. druhu.
Variační principy klasické mechaniky, heuristické základy Hamiltonovské mechaniky.
Dynamická stabilizace Kapitzova kyvadla.
Modelování pohybu dislokací v krystalech.

Cvičení

13 hod., povinná

Vyučující / Lektor

Osnova

Geometrické úlohy vedoucí k analytickému řešení ODR.
Kvalitativní analýza řešení některých diferenciálních a integrálních rovnic.
Stabilita a klasifikace ekvilibrií nelineárních autonomních soustav ODR a diferenciálních rovnic 2. řádu.
Sestavení pohybových rovnic vybraných mechanických soustav s 1 i více stupni volnosti a jejich kvalitativní analýza.