Detail předmětu

Fyzika a technika vakua

FSI-TTVAk. rok: 2025/2026

Předmět je věnován problematice fyzikálních procesů ve vakuu, měření vakua, technice získávání vakua, materiálům vhodným pro konstrukci vakuových systémů a základním stavebním komponentům vakuových systémů.

Jazyk výuky

čeština

Počet kreditů

3

Vstupní znalosti

Znalost mechaniky a molekulové fyziky na úrovni učebnice HALLIDAY, D. - RESNICK, R. - WALKER, J. Fyzika, VUTIUM Brno 2001.Předpokládá se rovněž znalost základů diferenciálního a integrálního počtu.

Pravidla hodnocení a ukončení předmětu

Zkouška je písemná a ústní.
Přítomnost na cvičení je povinná a je sledována vyučujícím. Způsob nahrazení zmeškané výuky ve cvičení bude stanovena vyučujícím na základě rozsahu a obsahu zmeškané výuky.

Učební cíle

Cílem kursu je zprostředkování základního vhledu do fyziky vakua tak, aby byl student schopen po absolvování kursu samostatně navrhovat jednoduché vakuové systémy a pracovat samostatně s jednoduchými technologickými aparaturami využívajících k výrobě tenkých vrstev různé stupně vakua.
Student by měl být po absolvování kursu schopen navrhnout a spočítat jednoduchou UHV soustavu (rychlost čerpání, odplyňování stěn komory, volba materiálů a těsnění apod. vzhledem k zamýšlenému použití aparatury). Měl by též sám být schopen vyhledání netěsností vakuových aparatur a aktivního osvojení základních technologií, které využívají k přípravě tenkých vrstev vakuových systémů.

Základní literatura

Groszkowski, J.: Fyzika a technika vakua
Roth, A.: Vacum Technology
Weissler, G. L. - Carlsson, R. W.: Vacuum Physics and Technology

Doporučená literatura

Lukáč, P.: Netesnosti vákuových systémov
Lukáč, P.: Sbierka príkladov z vákuovej fyziky
Pátý, L.: Fyzika nízkých tlaků

Zařazení předmětu ve studijních plánech

  • Program B-FIN-P bakalářský 3 ročník, zimní semestr, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

Vakuum. Definice a klasifikace vakua. Klíčové pojmy. Historický vývoj. Význam a využití. Literární zdroje.
Kinetická teorie plynů. Základní vlastnosti plynů. Maxwellovo rozdělení rychlostí molekul. Tlak plynu. Střední volná dráha.
Zákony kinetické teorie plynů. Fyzikální procesy probíhající ve vakuových systémech. Efúze, difúze, přenos tepla a impulsu.
Proudění plynu. Adsorpce a desorpce. Rozpouštění a pronikání. Vypařování a kondenzace.
Ionizace plynu. Interakce elektronů a iontů s pevným povrchem.
Metody získávání vakua. Čerpací rychlost. Čerpání vakuového systému.
Rotační a sorpční vývěvy. Difúzní vývěvy. Turbomolekulární vývěvy. Iontové vývěvy. Kryogenní vývěvy.
Měření vakua. Absolutní a nepřímé měřicí metody. Vakuometr McLeodův, membránový a s rotující kuličkou. Piraniho, Penningův a ionizační vakuometr. Kvadrupólový spektrometr.
Ultravakuové systémy. Komponenty vakuových aparatur. Materiály pro vakuové aparatury.
Ventily a kohouty. Příruby a těsnění. Elektrické průchodky. Přenos pohybu do vakua. Vakuové aparatury.
Výpočet vakuového systému.
Návrh vakuové aparatury. Hledání netěsností. Odplyňování.
Praktické poznámky: Exkurze do laboratoře povrchů a tenkých vrstev, místnost 518, bud. A2, ÚFI FSI VUT Brno - využití vakua ve vědě a průmyslu.

Cvičení

10 hod., povinná

Vyučující / Lektor

Osnova

Příklady počítané ve cvičení budou vycházet z potřeb přednášek (viz např. doporučená literatura pro studenty Lukáč, P.: Sbierka príkladov z vákuovej fyziky.)

Cvičení s počítačovou podporou

3 hod., povinná

Vyučující / Lektor

Osnova

Viz osnova cvičení základní.