Detail předmětu
Výpočetní inteligence
FSI-9VINAk. rok: 2025/2026
Výpočetní inteligence (Computational Intelligence) je zastřešující název přírodně inspirovaných výpočetních metodologií vhodných pro řešení obtížných reálných problémů, které jsou s využitím běžných matematických či inženýrských přístupů špatně řešitelné. Kurz seznamuje se základními přístupy a pokročilými metodami používanými v této oblasti. Použitelnost metod je demonstrována na řešení jednoduchých inženýrských problémů. Studentům je dán prostor a podpora pro řešení vlastních optimalizačních úloh.
Jazyk výuky
čeština, angličtina
Garant předmětu
Zajišťuje ústav
Vstupní znalosti
Předpokládá se znalost základních souvislostí ze statistiky a optimalizace.
Pravidla hodnocení a ukončení předmětu
Předložení a obhájení projektu, který prezentuje/využívá některou z probíraných implementací metod počítačové inteligence.
Účast na přednáškách je žádoucí. Výuka běží podle individuálního plánu. Způsob nahrazení zameškaných hodin je plně v kompetenci vyučujícího.
Účast na přednáškách je žádoucí. Výuka běží podle individuálního plánu. Způsob nahrazení zameškaných hodin je plně v kompetenci vyučujícího.
Učební cíle
Seznámit studenty se základy tzv. výpočetní inteligence (Computational Intelligence), tj. přírodou inspirovanými přístupy pro řešení obtížných problémů reálného světa. Především v kontextu optimalizace, modelování a klasifikace. Diskutovány budou rozličné evolučními algoritmy, metaheuristiky a modely umělých neuronových sítí.
Pochopení základních metod počítačové inteligence a schopnost jejich implementace.
Pochopení základních metod počítačové inteligence a schopnost jejich implementace.
Základní literatura
Aliev,R.A, Aliev,R.R.: Soft Computing and its Application, World Scientific Publishing Co. Pte. Ltd., 2001, ISBN 981-02-4700-1 (EN)
Sima,J., Neruda,R.: Theoretical questions of neural networks, MATFYZPRESS, 1996, ISBN 80-85863-18-9 (CS)
Sima,J., Neruda,R.: Theoretical questions of neural networks, MATFYZPRESS, 1996, ISBN 80-85863-18-9 (CS)
Zařazení předmětu ve studijních plánech
- Program D-APM-P doktorský 1 ročník, zimní semestr, doporučený kurs
Typ (způsob) výuky
Přednáška
20 hod., nepovinná
Vyučující / Lektor
Osnova
Výuka je rozdělena do 4 bloků:
Blok 1: Výpočetní inteligence v kontextu umělé inteligence. Prezentace možných úloh. Prezentace úloh studentů.
Blok 2: Evoluční a hejnové výpočetní techniky a optimalizační metaheuristiky (Genetické algoritmy, Gramatická evoluce, Genetické programování, metaheuristika HC12, Mravenčí algoritmy)
Blok 3: Umělé neuronové sítě (dopředné, rekurentní, samoorganizace, hluboké účení)
Blok 4: Individuální konzultace pro vlastní úlohy.
Blok 1: Výpočetní inteligence v kontextu umělé inteligence. Prezentace možných úloh. Prezentace úloh studentů.
Blok 2: Evoluční a hejnové výpočetní techniky a optimalizační metaheuristiky (Genetické algoritmy, Gramatická evoluce, Genetické programování, metaheuristika HC12, Mravenčí algoritmy)
Blok 3: Umělé neuronové sítě (dopředné, rekurentní, samoorganizace, hluboké účení)
Blok 4: Individuální konzultace pro vlastní úlohy.