Detail předmětu
Maticový a tenzorový počet
FEKT-LMATAk. rok: 2010/2011
Definice matice. Základní pojmy. Rovnost a nerovnost matic. Transponování matic. Některé druhy matic. Determinant, základní vlastnosti. Základní operace s maticemi. Speciální tvary matic. Lineární závislost a nezávislost. Řád a hodnost matice. Inverzní matice.
Řešení lineárních algebraických rovnic. Linéární a kvadratické formy. Spektrální vlastnosti matic, vlastní čísla, vlastní vektory a charakteristické rovnice. Lineární prostor, dimenze. Linearní transformace souřadnic vektoru.
Kovariantní a kontravariantní souřadnice vektoru a jejich transformace. Definice tenzoru. Tenzor kovariantní, kontravariatní a smíšený. Operace s tenzory. Operace s tenzory. Součet dvou tenzorů. Násobek tenzoru reálným číslem. Úžení tenzorů. Symetrie a antisymetrie tenzorů.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Kolman, B., Introductory Linear Algebra, Macmillan Publ. Comp., New York 1991.
Zařazení předmětu ve studijních plánech
- Program EEKR-ML magisterský navazující
obor ML-SVE , 2 ročník, letní semestr, teoretická nadstavba
obor ML-SVE , 1 ročník, letní semestr, teoretická nadstavba
obor ML-KAM , 2 ročník, letní semestr, teoretická nadstavba
obor ML-KAM , 2 ročník, letní semestr, teoretická nadstavba
obor ML-TIT , 2 ročník, letní semestr, teoretická nadstavba
obor ML-TIT , 1 ročník, letní semestr, teoretická nadstavba
obor ML-EVM , 2 ročník, letní semestr, teoretická nadstavba
obor ML-EVM , 1 ročník, letní semestr, teoretická nadstavba
obor ML-EST , 2 ročník, letní semestr, teoretická nadstavba
obor ML-EST , 1 ročník, letní semestr, teoretická nadstavba
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
Determinant čtvercové komplexní matice.
Operace s maticemi, speciální tvary matic. Inverzní matice.
Použití matic k řešení soustav lineárních algebraických rovnic.
Lineární, bilineární a kvadratické formy. Definitnost kvadratických forem.
Spektrální vlastnosti matic.
Lineární prostor, báze, dimenze.
Lineární transformace souřadnic vektoru.
Kovariantní a kontravariantní souřadnice vektoru.
Definice tenzoru.
Tenzor kovariantní, kontravariantní, smíšený.
Operace s tenzory.
Symetrie a antisymetrie tenzorů druhého řádu.
Cvičení odborného základu
Vyučující / Lektor
Osnova
Determinant čtvercové komplexní matice.
Operace s maticemi, speciální tvary matic. Inverzní matice. Použití matic k řešení soustav lineárních algebraických rovnic.
Lineární, bilineární a kvadratické formy. Definitnost kvadratických forem.
Spektrální vlastnosti matic.
Lineární prostor, podprostor, báze, dimenze.
Lineární transformace souřadnic vektoru.
Kovariantní a kontravariantní souřadnice vektoru.
Definice tenzoru. Tenzor kovariantní, kontravariantní, smíšený.
Operace s tenzory. Symetrie a antisymetrie tenzorů druhého řádu.
Cvičení na počítači
Vyučující / Lektor
Osnova
Spektrální vlastnosti matic.
Operace s tenzory.