Detail předmětu
Počítačová podpora lékařské diagnostiky
FEKT-LPDGAk. rok: 2010/2011
Použití umělé inteligence v medicíně. Počítačově podporovaná lékařská diagnostika (PPLD), její aplikační oblasti, návrh systémů PPLD, význam a využití znalostí. Principy rozhodování v medicíně, medicínská data, interpretace diagnóz. Neurčitost v medicínských datech, usuzování za podmínek neurčitosti. Principy fuzzy vyjádření neurčité informace. Fuzzy logika pro PPLD. Stavba expertních systémů, význam znalostí a faktů, proces strojového usuzování. Reprezentace medicínských znalostí. Programování expertních systémů. Znalostní inženýrství, kooperace znalostního inženýra a lékařského experta.
Jazyk výuky
Počet kreditů
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Učební cíle
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Základní literatura
Krishnamoorthy, C. S., Rajeev, S.: Artificial Intelligence and Expert Systems for Engineers. CRC Press, 1996. (EN)
Nguyen, H. T., Walker, E. A.: A First Course in Fuzzy Logic. CRC Press, 1997. (EN)
Zařazení předmětu ve studijních plánech
Typ (způsob) výuky
Přednáška
Vyučující / Lektor
Osnova
Principy rozhodování v medicíně, medicínská data, informace, znalosti, metaznalosti, hypotézy, statistika v rozhodování, interpretace diagnóz.
Neurčitost v medicínských datech, usuzování za podmínek neurčitosti, klasická Bayesovská pravděpodobnost v. faktory určitosti v řešení medicínských problémů.
Míra věrohodnosti a míra nevěrohodnosti v procesu strojového usuzování, podobnost s lidským usuzováním, principy fuzzy vyjádření neurčité informace.
Fuzzy čísla, fuzzy relace a fuzzy logika pro PPLD.
Stavba expertních systémů, význam znalostí a faktů, proces strojového usuzování.
Reprezentace medicínských znalostí, produkční pravidla, rozhodovací stromy.
Deduktivní logika, výroková logika a predikátová logika v medicínské diagnostice.
Logické systémy a rezoluční metoda, dopředné a zpětné řetězení znalostí.
Programování expertních systémů, základy jazyka CLIPS, příklady návrhu expertních systémů v jazyce CLIPS.
Znalostní inženýrství, kooperace znalostního inženýra a lékařského experta v získávání znalostí, principy a zásady návrhu expertních systémů.
Fuzzy pravidla v expertních systémech.
Kompoziční pravidlo inference v medicínských expertních systémech, defuzzifikace pro stanovení jednoznačné diagnózy.
Cvičení na počítači
Vyučující / Lektor
Osnova