Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
studijní program
Fakulta: FASTZkratka: DPA-SAk. rok: 2021/2022
Typ studijního programu: doktorský
Kód studijního programu: P0732D260019
Udělovaný titul: Ph.D.
Jazyk výuky: angličtina
Poplatek za studium: 4000 EUR/ročně pro studenty z EU, 4000 EUR/ročně pro studenty mimo EU
Akreditace: 8.10.2019 - 8.10.2029
Forma studia
Prezenční studium
Standardní doba studia
4 roky
Garant programu
prof. Ing. Miloslav Novotný, CSc.
Oborová rada
Předseda :prof. Ing. Miloslav Novotný, CSc.Člen interní :prof. Ing. Jitka Mohelníková, Ph.D.doc. Ing. Vít Motyčka, CSc.prof. Ing. arch. Alois Nový, CSc.prof. Ing. Miroslav Bajer, CSc.prof. Ing. Jiří Hirš, CSc.prof. Ing. Milan Ostrý, Ph.D.prof. Ing. Jan Pěnčík, Ph.D.doc. Ing. Aleš Rubina, Ph.D.prof. RNDr. Ing. Petr Štěpánek, CSc., dr. h. c.Člen externí :Ing. Petr AndrysIng. Petr Sedlák, Ph.D.Ing. Vladimír Tichomirov, CSc.prof. Ing. Karel Tuza, CSc.
Oblasti vzdělávání
Cíle studia
Cílem studia doktorského studijního programu Pozemní stavby je poskytnout vynikajícím absolventům magisterského studia specializované nejvyšší univerzitní vzdělání a vědeckou přípravu ve vybraných aktuálních oblastech oboru. Studium je zaměřeno na komplexní vědeckou přípravu, metodiku samostatné vědecké práce a na rozvoj poznání v oblasti teorie pozemních staveb s tím, že jako základní disciplíny jsou prezentovány oblasti pozemního stavitelství a to především výzkum a vývoj v oblasti stavebních konstrukcí, konstrukcí dřevostaveb, sanace stavebních materiálů a konstrukcí, dále měřící a diagnostické metody, modelování fyzikálních procesů a úloh stavební fyziky. Vědecká příprava v tomto studijním programu je založena na zvládnutí výchozích teoretických disciplín přírodovědného základu a teoretických a vědních disciplín příslušného zaměření. Součástí studia je také zapojení studentů do přípravy a řešení národních a mezinárodních vědeckovýzkumných projektů, prezentace dosažených výsledků na národních i mezinárodních vědeckých a odborných konferencích a jejich publikování v odborných a vědeckých zahraničních i tuzemských časopisech. Během studia získává student nové teoretické poznatky, vlastní zkušenosti z přípravy, realizace a vyhodnocení experimentů a potřebné praktické poznatky také díky úzké spolupráci se stavební praxí a rovněž díky absolvování zahraničních stáží na spolupracujících zahraničních universitách nebo výzkumných pracovištích. V závěrečné fázi studia provádí student syntézu všech studiem získaných teoretických poznatků i dosažených výsledků vlastní tvůrčí práce a zpracovává svoji doktorskou disertační práci, u níž je kladen důraz na exaktnost a formulování konkrétních přínosů pro další rozvoj studovaného oboru.
Profil absolventa
Absolvent doktorského studijního programu Pozemní stavby je všestranně teoreticky i odborně vybaveným odborníkem, který zvládl problematiku specializace na vysoké úrovni svých vědomostí a je schopen samostatné tvůrčí práce. Je připraven odborně působit a zastávat samostatné vyšší funkce v oblasti výzkumu a vývoje nových technologií v sektoru výstavby objektů pozemních staveb, ale i v projekčních firmách, popř. ve státní správě. Získal komplexní teoretickou i odbornou průpravu pro samostatné řešení technických problémů a tvůrčí vědeckou práci. Na základě získaných poznatků, zkušeností, dovedností a vědomostí je připraven k vědecké a tvůrčí činnosti, a to samostatně i v týmech na národní i mezinárodní úrovni. Díky sledování aktuálních trendů v oblasti vývoje v oblasti pozemních staveb a úzké spolupráci oboru se zahraničními univerzitami splňuje absolvent doktorského studijního programu předpoklady ke svému dalšímu odbornému kariérnímu a profesnímu akademickému růstu, a to i v zahraničí. Po dobu studia si absolvent prakticky osvojuje a získává pedagogické schopnosti, kterých může využít při pedagogicko-vědeckém působení na vzdělávacích institucích, zabývajících se problematikou pozemních staveb v tuzemsku a díky získaným jazykovým znalostem také v zahraničí.
Charakteristika profesí
Podstatné rozvinutí teoretických a experimentálních schopností umožňuje absolventovi doktorského studijního programu Pozemní stavby samostatnou tvůrčí činnost týkající se zejména pozemního stavitelství včetně souvisejících specializací zejména v oblasti technických zařízení budov (ZTI, vytápění, vzduchotechnika), vyspělých speciálních technologií staveb, stavební fyziky (stavební tepelné technicky, stavební akustiky a denního osvětlení budov), speciálních sanací staveb, požární bezpečnosti budov a enviromentálně vyspělých staveb. Absolvent je schopen samostatné tvůrčí činnosti zejména v oblasti výzkumu a vývoje – je odborně vybaven a schopen samostatně řešit složité problémy např. při optimalizaci výběru vhodných materiálů či jejich skladeb zohledňující společenské potřeby, provozní požadavky, rizika, ekonomické dopady a vlivy na životní prostředí. Uplatnění absolventů programu Pozemní stavby je v širokých oblastech stavebnictví spočívajících např. v návrhu speciálních prvků a konstrukcí Pozemní staveb včetně ověřování jejich funkčnosti a spolehlivosti a to jak s využitím experimentálních postupů, tak s pomocí numerických modelů. Absolvent má dobré předpoklady také k uplatnění v akademické sféře i v dalších institucích zabývajících se vědou, výzkumem, vývojem a inovacemi. Jeho vybavení znalostmi cizích jazyků v oblasti své odbornosti je předpokladem pro eventuální působení v zahraničí. Po splnění délky praxe a zákonných podmínek se může u ČKAIT autorizovat jako stavební inženýr ve specializaci Pozemní stavby, Technika prostředí staveb nebo Energetické auditorství. Dlouhodobá uplatnitelnost absolventů stávajícího doktorského studijního programu Pozemní stavby v praxi je dle interních statistik prakticky 100 % a to nejen po ukončení studia, ale i při předčasném ukončení studia. U absolventů je v praxi oceňována zejména schopnost samostatného řešení složitých odborných problémů a schopnost komunikace minimálně v anglickém jazyku. Mnozí absolventi DSP Pozemní stavby po úspěšném ukončení studia přechází do zaměstnaneckého poměru na fakultě a následně rozvíjí své tvůrčí schopnosti, snižují věkový průměr pedagogů fakulty a následně se úspěšně habilitují, případně absolvují jmenovací řízení a jsou tedy zárukou rozvoje a budoucností fakulty.
Podmínky splnění
Splnění předmětů individuálního studijního plánu, úspěšné vykonání státní doktorské zkoušky, zahraniční praxe, příslušná tvůrčí činnost a úspěšná obhajoba disertační práce.
Vytváření studijních plánů
Pravidla a podmínky pro tvorbu studijních plánů studijních programů uskutečňovaných na Fakultě stavební VUT vymezuje: Řád studijních programů VUT (www.vutbr.cz/uredni-deska/vnitrni-predpisy-a-dokumenty), který podle čl. 1, odst. 1 písmene: c) vymezuje procesy vzniku, schvalování a změn návrhů studijních programů před jejich předložením k akreditaci Národnímu akreditačnímu úřadu pro vysoké školství, d) stanovuje formální náležitosti studijních programů a studijních předmětů, e) vymezuje povinnosti garantů studijních programů a garantů předmětů, f) vymezuje standardy studijních programů na VUT, g) vymezuje principy zajišťování kvality studijních programů. Studijní a zkušební řád Vysokého učení technického v Brně (www.vutbr.cz/uredni-deska/vnitrni-predpisy-a-dokumenty) Podrobnosti podmínek pro studium na Fakultě stavební VUT v Brně upravuje Směrnice děkana Pro uskutečňování doktorských studijních programů v prezenční formě studia na Fakultě stavební Vysokého učení technického v Brně (www.fce.vutbr.cz/studium/predpisy/normy.asp?kategorie_id=56) Studium doktoranda probíhá podle individuálního studijního plánu, který zpracuje v úvodu studia školitel ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Během prvních tří semestrů skládá doktorand zkoušky z povinných, povinně volitelných příp. volitelných předmětů a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce. Do konce pátého semestru skládá doktorand státní doktorskou zkoušku. Doktorand je také zapojen do pedagogické činnosti, která je součástí jeho vědecké přípravy. Součástí individuálního studijního plánu jsou v jednotlivých ročnících vědecké výstupy: - pravidelná publikační aktivita (Juniorstav a podobné), - účast na vědeckých konferencích v tuzemsku i v zahraniční, - pro obhajobu DZP nutno publikovat – min. 2x Scopus nebo 1x WOS s impakt faktorem.
Dostupnost pro zdravotně postižené
Na Fakultě stavební VUT je v současné době zajištěn bezbariérový přístup do všech výukových místností. Studenti však musí být zdravotně způsobilí pro získání kvalifikace stavebního inženýra. Při prakticky orientované laboratorní výuce musí být schopni samostatné obsluhy měřicích přístrojů a obdobného laboratorního vybavení, aniž by tím ohrožovali sebe nebo své okolí. VUT poskytuje podporu studentům se specifickými potřebami, podrobnosti jsou uvedeny ve Směrnici č. 11/2017 (www.vutbr.cz/uredni-deska/vnitrni-predpisy-a-dokumenty/-d141841/uplne-zneni-smernice-c-11-2017-p147551). K podpoře zajištění rovného přístupu k vysokoškolskému vzdělání má VUT v organizační struktuře začleněno Poradenské centrum „Alfons“, které je součástí Institutu celoživotního vzdělávání VUT a jeho posláním je poskytovat poradenství a podpůrné služby uchazečům a studentům se specifickými vzdělávacími potřebami. Specifickými vzdělávacími potřebami se rozumí poruchy učení, fyzický a smyslový handicap, chronické somatické onemocnění, poruchy autistického spektra, narušené komunikační schopnosti a psychické onemocnění (alfons.vutbr.cz/o-nas). Studentům jsou poskytovány informace týkající se přístupnosti studijních programů vzhledem ke specifickým potřebám uchazeče, informace o architektonické přístupnosti jednotlivých fakult a součástí univerzity, o možnostech ubytování na kolejích VUT, o možnostech adaptace přijímacího řízení a adaptaci samotného studia. K dalším službám centra pro studenty se specifickými vzdělávacími potřebami pak také patří tlumočnický a přepisovatelský servis, či asistenční služby – průvodcovské, prostorové orientace s cílem umožnit těmto studentům především prokázat své dovednosti a znalosti stejně jako ostatní studenti. Děje se tak prostřednictvím tzv. adaptace studia, tedy vhodnou úpravou studijního režimu, což však nelze chápat jako zjednodušení obsahu studia či úlevy studijních povinností.
Návaznost na další typy studijních programů
Doktorský studijní program Pozemní stavby navazuje na navazující magisterský studijní program Stavební inženýrství, zejm. na studijní obory Pozemní stavby a Realizace staveb, příp. i na další studijní obory a sesterské navazující magisterské studijní programy. Po akreditaci navazujících magisterských studijních programů Stavební inženýrství – pozemní stavby a Stavební inženýrství – realizace staveb na tyto programy.
Vypsaná témata doktorského studijního programu
Zhodnocení možných vlivů renovace školských staveb na vnitřní prostředí učeben.
Školitel: Mohelníková Jitka, prof. Ing., Ph.D.
Téma doktorské práce je zaměřeno na vývoj, validaci, verifikaci a teoreticko-experimentální aplikaci numerických modelů popisujících přenos tepla v prostoru a čase. Tyto časoprostorově deterministické numerické modely přenosu tepla založené na zákonech termodynamiky jsou ve stavebnictví uplatnitelné zejména při tvorbě vnitřního prostředí v budově, stejně jako při vývoji pokročilých systémů TZB.
Školitel: Plášek Josef, Ing., Ph.D.
Při výpočtech pro určení činitele denní osvětlenosti se uvažuje s koeficienty znečištění interiéru a exteriéru osvětlovací soustavy. Hodnoty těchto koeficientů byly stanoveny již v roce 1994. Od té doby neprošly aktualizací a úpravou, kterou si vyžaduje jiný životní styl (na silnicích se jezdí více aut, topí se plynem a elektřinou, atd.). Cílem práce je zkoumat vliv aktuálního životního stylu na znečištění povrchů a skel, a na světelnou pohodu v krátkodobém i dlouhodobém časovém horizontu.
Školitel: Vajkay František, Ing., Ph.D.
Téma je zaměřeno na analýzu dynamiky toků zejména tepla a chladu v budovách v závislosti na klimatických podmínkách a provozních stavech vnitřního prostředí budov. Dynamika energetických potřeb budovy je spojena s energií získávanou tradičními zdroji a hlavně obnovitelnými zdroji energie. K řešení budou využity jak experimentální metody, tak simulační metody na zjednodušených modelech budov nebo jejich částí. Kritériem analýzy bude především celoroční efektivita využívání zdroje energie, kvalita vnitřního protředí budov a provozní úspory.
Školitel: Hirš Jiří, prof. Ing., CSc.
Kondenzace vodní páry na vnitřním povrchu výplně otvoru a koutu konstrukcí je nejčastěji projev nedostatečného řešení detailů stavby. Úkolem je namodelovat a optimalizovat skladby konstrukcí tak, aby nedocházelo k těmto negativním jevům. Hodnocení bude prováděno na úrovni rizika růstu plísní a také na úrovni teploty rosného bodu.
Školitel: Kalousek Miloš, doc. Ing., Ph.D.
Cílem je inovace chladícího okruhu pracující s chladivem s nízkým GWP, zvýšení účinnosti, využití odpadního tepla. Nedílnou součástí výzkumu je stanovení bezpečnostních požadavků aplikace chladicích zařízeních pracujících s chladivem A2L do budov.
Školitel: Formánek Marian, Ing., Ph.D.
Doktorská práce je zaměřena na modelování a simulace budov a inteligentních urbanistických celků. Efektivní využití a umístění prvků vzduchotechniky, vytápění a chlazení v budovách a jejich optimální řídící systém. Systémy, zařízení a strategie pro akumulaci energie. Bude využíváno též multikriteriálních optimalizačních metod.
Školitel: Šikula Ondřej, prof. Ing., Ph.D.
Doktorská práce je zaměřena na modelování a simulace vlivu stínicích konstrukcí a vegetace na tepelnou zátěž budov. Předpokládá se využití softwarů ANSYS Fluent, OpenFOAM, TRNSYS a DesignBuilder. Pozornost bude věnována též optimalizaci řídících systémů. Bude využíváno též multikriteriálních optimalizačních metod.
Zateplování budov je velmi přínosné z hlediska energetické úspory, ale je třeba prověřit všechny stavebně-fyzikální aspekty. Především z hlediska vlhkostního a šíření vodní páry konstrukcí a případná tvorba plísní na rozhraní vrstev skladby. Současně i chování souvrství při kritických situacích jako je požár nebo přehřívání povrchu. Úkolem je namodelovat skutečné konstrukce a porovnat výsledky a provést predikci ideálního stavu.
Doktorská práce je zaměřena na optimalizaci tepelně aktivovaných stavebních konstrukcí (TAK) sloužících k vytápění a chlazení budov. Předpokládá se využití simulačních metod, laboratorního experimentu a měření insitu. Cílem je stanovit doporučení pro navrhování a řízení optimálních TAK. K simulacím je možné využít softwary CalA, TRNSYS, ANSYS Fluent. Bude využíváno též multikriteriálních optimalizačních metod.
Doktorská práce je zaměřena na modelování a simulace budov ukládání tepla a chladu do tepelných akumulátorů využívajících látky s fázovou změnou tání a tuhnutí - PCM. Cílem je překlenout nesoulad mezi dodávkou energie z konvenčních a alternativních zdrojů s křivkou její spotřeby energie v budově. Pozornost bude věnována též, systémům a metodám pro optimální řízení akumulace využití energie v budově. Bude využíváno též multikriteriálních optimalizačních metod.
Téma doktorské práce je zaměřeno na aplikaci a ověření teoretických metod výzkumu proudění vzduchu v budovách a vnější aerodynamiky budov se současným transportem znečišťujících látek. K simulacím je možné využít softwary Fluent, CFX, nebo OpenFOAM. Bude využíváno též multikriteriálních optimalizačních metod.
Doktorská práce je zaměřena na výzkum využití energie země pro účely vytápění a chlazení. Náplní práce bude teoretický a experimentální výzkum tepelné interakce budovy s podzákladím a návrh optimálních zemních a základových výměníků. Cílem je zefektivnit získávání geotermální energie z prvků základových konstrukcí a vytvořit metodiku pro jejich navrhování v ČR. K simulacím je možné využít softwary CalA, TRNSYS, ANSYS Fluent.