Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
studijní program
Fakulta: FEKTZkratka: DPA-EITAk. rok: 2023/2024
Typ studijního programu: doktorský
Kód studijního programu: P0619D060001
Udělovaný titul: Ph.D.
Jazyk výuky: angličtina
Poplatek za studium: 2500 EUR/ročně pro studenty z EU, 2500 EUR/ročně pro studenty mimo EU
Akreditace: 8.10.2019 - 7.10.2029
Forma studia
Prezenční studium
Standardní doba studia
4 roky
Garant programu
doc. Ing. Jiří Hošek, Ph.D.
Oborová rada
Předseda :doc. Ing. Jiří Hošek, Ph.D.Člen interní :prof. Ing. Jaroslav Koton, Ph.D.prof. Ing. Zdeněk Smékal, CSc.prof. Ing. Jiří Mišurec, CSc.doc. Ing. Vladislav Škorpil, CSc.doc. Ing. Radim Burget, Ph.D.Člen externí :prof. Ing. Ivan Baroňák, Ph.D.doc. Ing. Miloš Orgoň, Ph.D.doc. Ing. Otto Dostál, CSc.
Oblasti vzdělávání
Cíle studia
Doktorand se naučí tvůrčím způsobem využívat teoretické znalosti získané jak studiem vybraných kurzů, tak vlastní tvůrčí činností. Tyto poznatky je schopný efektivně využít při následném návrhu vlastních a inovátorských řešení v rámci dalšího experimentálního vývoje a aplikačního výzkumu. Důraz je tak kladen na získání jak teoretických, tak i praktických dovedností, dále samostatnost v rozhodování, formulování vědecko-výzkumných hypotéz pro přípravu projektů základního až aplikovaného výzkumu, schopnost hodnocení výsledků a jejich prezentace ve formě vědeckých textů a prezentací před vědeckou komunitou.
Profil absolventa
Doktorský studijní program „Electronics and Information Technology“ (DPA-EIT) je zaměřen na přípravu špičkových vědeckých a výzkumných specialistů, kteří budou mít hluboké znalosti principů a technik využívaných v komunikačních a datových drátových i bezdrátových sítích a s tím souvisejících oblastí jako je i vlastní sběr, zpracování a zpětná reprezentace užitečných uživatelských dat na úrovni aplikační vrstvy. Hlavní části studia tvoří oblasti teoretické informatiky a komunikační techniky. Absolvent má široké znalosti komunikačních a informačních technologií, datových přenosů a jejich zabezpečení. Absolvent se orientuje v operačních systémech, počítačových jazycích a databázových systémech, jejich užití včetně návrhu vhodného software a uživatelských aplikací. Je schopen navrhovat nová technologická řešení komunikačních zařízení a informačních systémů určených pro pokročilý přenos informací.
Charakteristika profesí
Absolventi programu "Electronics and Information Technologies" se uplatňují zejména ve výzkumných, vývojových a projekčních týmech, v oblasti odborné činnosti ve výrobních nebo obchodních organizacích, v akademické sféře a v dalších institucích zabývajících se vědou, výzkumem, vývojem a inovacemi, ve všech oblastech společnosti, kde dochází k aplikaci a využití komunikačních systémů a přenosu informace datovými sítěmi. Uplatnění naši absolventi nalézají zejména při analýze, návrhu, tvorbě nebo správě komplexních systémů pro přenos a zpracování dat, a také při programování, integraci, podpoře, údržbě nebo prodeji těchto systémů.
Podmínky splnění
Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení. Hodnocení a kontrola plnění individuálního studijního plánu doktoranda probíhá v kontrolních termínech stanovených k danému akademickému roku: • 1. ročník ke dni 30. června, • 2. ročník ke dni 30. dubna při odevzdání přihlášky ke státní doktorské zkoušce, • při zápisu do 4. ročníku studia, • při odevzdání rozpracované disertační práce, • při odevzdání přihlášky k obhajobě disertační práce. Splněním ISP se rozumí získání minimálního počtu bodů ve studijní oblasti, v oblasti pedagogické praxe a v oblasti vědecké a odborné činnosti ve stanovených termínech kontroly. Dále musí doktorand získat ve stanoveném termínu celkový minimální počet bodů. Minimální počty bodů jsou stanoveny a sledovány v ISP doktoranda (Bodové hodnocení tvůrčích aktivit doktoranda a Celkové bodové hodnocení doktoranda). Vzhledem k tomu, že se jedná o studijní program typu double-degree, student musí splnit také studijní povinnosti dané platnou smlouvou mezi Vysokým učením technickým v Brně a Tampere University of Technology. Mezi tyto dodatečné povinnosti patří zejména povinnost studia i na partnerské univerzitě ve výši minimálně 12 měsíců. Student (doktorand) má od začátku svého studia přiděleny dva školitele – na domácí i partnerské univerzitě, kteří společně koordinují studijní a vědecké aktivity studenta. Pokud doktorand neplní řádně své povinnosti (tj. nezíská ve stanovených termínech požadovaný počet bodů), proděkan společně se školitelem doktoranda na základě doporučení oborové rady navrhnou snížení stipendia nebo odebrání stipendia anebo ukončení studia.
Vytváření studijních plánů
Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení. Během prvních především čtyř semestrů skládá doktorand zkoušky z povinných, povinně volitelných anebo volitelných předmětů pro splnění bodových limitů ze Studijní oblasti, a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce. Do konce druhého roku studia skládá doktorand státní doktorskou zkoušku, kterou prokazuje široký rozhled a hluboké znalosti v oboru, souvisejícím s tématem disertační práce. K této zkoušce se musí přihlásit nejpozději do 30. dubna ve druhém roce svého studia. Státní doktorské zkoušce předchází zkouška z anglického jazyka. Ve třetím a čtvrtém roce svého studia provádí doktorand potřebnou výzkumnou činnost, publikuje dosažené výsledky a zpracovává svoji disertační práci. Součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci, což je nutné doložit nejpozději při odevzdání disertační práce. Doktorandi v prezenční formě ve čtvrtém roce studia a doktorandi v kombinované formě v pátém roce studia předkládají do konce zimního zkouškového období svému školiteli rozpracovanou disertační práci, který ji ohodnotí. Disertační práci by měl doktorand odevzdat do konce 4. roku v prezenční formě studia, respektive do konce 5. roku v kombinované formě studia. Student prezenční formy doktorského studia je v průběhu studia povinen absolvovat pedagogickou praxi, tj. působit v procesu výuky. Zapojení doktoranda do pedagogické činnosti je součástí jeho vědecké přípravy. Pedagogickou praxí doktorand získává zkušenosti v předávání poznatků a zdokonaluje prezentační dovednosti. Skladbu pedagogických aktivit (cvičení, laboratorní cvičení, vedení projektů apod.) určí doktorandovi vedoucí daného ústavu po dohodě se školitelem. Povinnost pedagogické praxe se nevztahuje na doktorandy-samoplátce a na doktorandy v kombinované formě studia. Zapojení do výuky v rámci pedagogické praxe potvrdí po jejím splnění školitel v IS VUT.
Vypsaná témata doktorského studijního programu
The rapid advancement of the next-generation wireless communication technologies and artificial intelligence (AI) has led to the development of new techniques for improving communication in high mobility applications, including mmWave communications and unmanned aerial vehicle (UAV) applications. This doctoral topic deals first with an overview of the state-of-the-art AI-aided wireless communication technologies in different aerial applications, highlighting their capabilities and limitations. Later, the research should focus on the challenges associated with ultra-reliable low latency communications (URLLC) in 5G+ wireless systems. The key goal of this topic is a design of novel AI-aided technique than will help in overcoming current challenges and issues related to the deployment of 5G+ mobile networks. Moreover, the thesis should also explore the potential benefits of AI-aided wireless communication technologies in mmWave networks, including improved performance, reliability, and energy efficiency.
Školitel: Hošek Jiří, doc. Ing., Ph.D.
Sítě pro doručování obsahu v Internetu (CDN, Content Delivery Networks) zvyšují rychlost přístupu k datům. Data jsou replikována a umisťována na řadě geograficky různých míst. Cílem studia je provést optimalizaci distribuce replikovaných dat na základě zvolených kritérií, jako například redukce času přístupu a rozložení zátěže serverů.
Školitel: Komosný Dan, prof. Ing., Ph.D.
Téma se zabývá forenzními metodami pro získání digitálních důkazů z úložných zařízení a z operační paměti (volatilní data). Cílem je optimalizace hledání důkazů včetně jejich vzájemných souvislostí. Příkladem je hledání souvislostí v záznamech systémového žurnálu více zařízení. V rámci tématu lze pracovat s různými typy zařízení a operačními systémy.
Disertační práce je zaměřena na výzkum optimalizačních metod ultraširokopásmových analogových systémů libovolného celistvého a neceločíselného řádu na tranzistorové úrovni integrovaných na čipu. Cílem práce je s využitím parazitních jevů tranzistorů navrhnout nová obvodová řešení s nízkým napájecím napětím a s malou spotřebou pracující v kmitočtové oblasti jednotek GHz. Vybraná nová obvodová řešení časových zpoždění, oscilátorů, kmitočtových filtrů druhého nebo vyššího řádu, simulátorů syntetických induktorů, atd. s potenciálem na využití v 6G komunikačních systémech budou realizovány na čipu a ověřeny experimentálním měřením.
Školitel: Herencsár Norbert, doc. Ing., Ph.D.
Wireless data transmission using higher frequency bands in the order of GHz or even THz is one of the cornerstones of modern mobile networks to meet the ever-increasing demands for overall capacity and scalability of cellular systems. However, the propagation of a radio signal in those frequency bands entails a number of new technological requirements and challenges that need to be addressed for successful deployment in real-world scenarios. The aim of this doctoral thesis is a detailed analysis of key requirements of evolving applications such as extended reality (XR) and the subsequent design of a propagation model considering transmissions in 3D space and other specifics of the radio channel in the above-6 GHz frequency bands. The proposed model will be verified by simulations and / or experimental measurements.
Disertační práce je zaměřena na výzkum původních struktur nekonvenčních analogových aktivních funkčních bloků jako např. proudové či napěťové konvejory pomocí chemického popisu branových veličin. Cílem výzkumu je navrhnout nové struktury chemických konvejorů různé generace a jejich využití v měřicích systémech pro snímání základních veličin v biomedicínckých systémech. Vybrané systémy budou realizovány na čipu a ověřeno experimentálním měřením.
Disertační práce bude věnována problematice modelovaní akumulačních prvků neceločíselného řádu (-1; +1) pomocí fraktálního kalkulu. Cílem práce je s využitím parazitních jevů tranzistorů výzkum původních důvěryhodných obvodových řešení emulátorů kondenzátoru a cívky s nízkým napájecím napětím a s malou spotřebou. Vybraná nová implementace emulátorů akumulačních prvků budou použity pro modelování různých odrůd a druhů zemědělských produktů a biomedicínských systémů (zrání ovoce či zeleniny, modelování sluchového aparátu, plic a jater člověka a savců, atd.) na základě dat získaných pomocí elektrické impedanční spektroskopie.
Výzkum a vývoj v oblasti heterogenních mobilních sítí 5G+ si klade za cíl splnění neustále se zvyšujících požadavků na přenosové rychlosti, zpoždění, kvalitu služeb, a také množství současně komunikujících koncových zařízení. Dosažení všudypřítomné konektivity bude docíleno díky zcela novým síťovým strukturám, progresivním technologiím, inovativním mechanismům pro správu síťových prostředků, podstatným změnám v kmitočtovém plánování či výběru obsluhujících buněk a optimalizaci procedur pro efektivní přidělování síťových zdrojů. Komunikační technologie pracující v licenčním či bezlicenčním frekvenčním pásmu tak budou integrovány do jednoho funkčního celku (sítě). Cílem disertační práce bude v první fázi seznámení se s aktuálními komunikačními technologiemi pro realizaci tzv., massive Machine-Type Communication (mMTC) scénářů v rámci 5G mobilních technologií dle 3GPP Rel. 15+. Pozornost bude soustředěna zejména na (i) 5G-IoT technologie, tj., Narrowband IoT, LTE Cat-M, LTE Cat1, LTE Cat1bis a na (ii) vysokorychlostní 5G technologie NSA (Non-StandAlone a SA (StandAlone). Pro detailní pochopení principů komunikace v případě tzv. „Cellular 5G-IoT“ technologií bude provedena série reálných měření s prototypy vytvořenými na VUT v Brně, kdy budou data následně použity jako vstupní informace pro vytvoření komplexních simulačních scénářů / analytického modelování. Následně bude přistoupeno k analýze získaných výsledků a návrhu mechanismů pro optimalizaci využití síťových prostředků, kdy bude pozornost zaměřena zejména na: (i) optimalizaci procedur datového toku pro signalizační a datovou rovinu, (ii) optimalizaci signalizačního datového provozu a možnosti přenosu uživatelských dat v signalizaci, (iii) přechodu zařízení mezi jednotlivými operačními stavy či (iv) možnosti využití multi-RAT v rámci koncového zařízení a volba technologie na základě definovaných podmínek. Navržené principy budou prvotně implementovány v rámci vybraného simulačního nástroje (Network Simulator 3 či Matlab) a následně implementovány jak na straně koncových zařízení, tak v komunikační infrastruktuře telekomunikačního operátora. Pro možnost realizace výše uvedených scénářů budou využity unikátní laboratoře UniLab a RICAIP na VUT FEKT UTKO, respektive CEITEC. Také bude využita již fungující spolupráce s mezinárodními průmyslovými firmami či univerzitami.
Školitel: Mašek Pavel, Ing., Ph.D.