Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
studijní program
Fakulta: FEKTZkratka: DKC-TEEAk. rok: 2024/2025
Typ studijního programu: doktorský
Kód studijního programu: P0714D060005
Udělovaný titul: Ph.D.
Jazyk výuky: čeština
Akreditace: 28.5.2019 - 27.5.2029
Forma studia
Kombinované studium
Standardní doba studia
4 roky
Garant programu
doc. Ing. Petr Drexler, Ph.D.
Oborová rada
Předseda :doc. Ing. Petr Drexler, Ph.D.Člen interní :doc. RNDr. Martin Kovár, Ph.D.doc. Ing. Jan Mikulka, Ph.D.prof. Ing. Lubomír Brančík, CSc.doc. Ing. et Ing. Vilém Neděla, Ph.D., DSc.doc. RNDr. Dana Hliněná, Ph.D.
Oblasti vzdělávání
Cíle studia
Doktorský studijní program "Teoretická elektrotechnika" je zaměřen na přípravu špičkových vědeckých a výzkumných specialistů v různých oblastech teoretické elektrotechniky. Zejména v teorii a aplikacích elektromagnetismu, elektrických obvodů, v metodách elektro/magnetických měření a metodách zpracování signálů. Příprava je podpořena poskytnutím znalostí v souvisejících matematických disciplínách, jakými jsou problematika stochastických procesů a statistických metod vyšetřování zkoumaných systémů, analýza systémů pomocí funkcionálních rovnic, návrh multikriteriálních optimalizačních metod, numerických metod řešení spojitých a diskrétních dynamických systémů a dalších. Cílem programu je poskytnout ve všech těchto dílčích zaměřeních doktorské vzdělání absolventům vysokoškolského magisterského studia, prohloubit jejich teoretické znalosti a rozvíjet spojené praktické odborné dovednosti a naučit je metodám vědecké práce.
Profil absolventa
Absolventi doktorského studia v programu "Teoretická elektrotechnika" umí řešit vědecké a složité technické inovační úlohy v oblasti elektrotechniky. A to v teoretické rovině a také při jejím praktickém nasazení ve výzkumu, vývoji a výrobě. Pro řešení technických výzkumných a vývojových úloh jsou vybaveni komplexními znalostmi z teorie a aplikací elektromagnetického pole, elektrických obvodů, metod měření veličin a zpracování signálů a jejich fyzikálním a matematickým popisem. Jsou schopni tvůrčím způsobem využívat moderní výpočetní, měřicí a diagnostickou techniku. Díky kvalitnímu rozvinutému teoretickému vzdělání, odborným praktickým dovednostem a specializaci ve vybraném oboru jsou absolventi doktorského studia vyhledáváni jako specialisté a řídící pracovníci v oblasti obecné elektrotechniky. Uplatní se jako vědečtí, výzkumní a řídící pracovníci v základním či aplikovaném výzkumu, jako specializovaní odborníci a vedoucí týmů vývoje, konstrukce a provozu ve výzkumných a vývojových institucích a elektrotechnických a elektronických výrobních společnostech působících v oblasti pokročilých technologií.
Charakteristika profesí
Specialisté a řídící pracovníci v oblasti obecné elektrotechniky, vědečtí, výzkumní a řídící pracovníci v základním či aplikovaném výzkumu, specializovaní odborníci a vedoucí týmů vývoje, konstrukce a provozu ve výzkumných a vývojových institucích a elektrotechnických a elektronických výrobních společnostech působících v oblasti pokročilých technologií
Podmínky splnění
Studium doktoranda probíhá podle individuálního studijního plánu, který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. V individuálním studijním plánu jsou specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Student si zapíše a vykoná zkoušky z povinných předmětů Numerické úlohy s parciálními diferenciálními rovnicemi a Zkouška z angličtiny před státní doktorskou zkoušku, minimálně dvou povinně volitelných předmětů ohledem na zaměření jeho disertační práce, a dále minimálně dvou volitelných předmětů (Angličtina pro doktorandy, Řešení inovačních zadání, Vědecké publikování od A do Z, Citování ve vědecké praxi). Ke státní doktorské zkoušce se může student přihlásit až po vykonání všech zkoušek předepsaných jeho individuálním studijním plánem. Před státní doktorskou zkouškou student vypracuje pojednání k disertační práci, v němž detailně popíše cíle práce, důkladné zhodnocení stavu poznání v oblasti řešené disertace, případně charakteristiku metod, které hodlá při řešení uplatňovat. Obhajoba pojednání, které je oponováno, je součástí státní doktorské zkoušky. V další části zkoušky musí student prokázat hluboké teoretické i praktické znalosti v oblasti elektrotechniky, elektromagnetismu, teorie obvodů, metod měření elektrických a jiných fyzikálních veličin, zpracování a analýzy signálů a matematického modelování technických procesů. Státní doktorská zkouška probíhá ústní formou a kromě diskuze nad pojednáním k disertačním práce se také skládá z tematických okruhů týkajících se povinných a povinně volitelných předmětů. K obhajobě disertační práce se student hlásí po vykonání státní doktorské zkoušky a po splnění podmínek pro ukončení, jakými jsou účast na výuce, vědecká a odborná činnost (tvůrčí činnost), a minimálně měsíční studijní nebo pracovní stáž na zahraniční instituci anebo účasti na mezinárodním tvůrčím projektu.
Vytváření studijních plánů
Studium doktoranda probíhá podle individuálního studijního plánu (dále jen ISP), který zpracuje v úvodu studia školitel doktoranda ve spolupráci s doktorandem. Individuální studijní plán je pro doktoranda závazný. Jsou v něm specifikovány všechny povinnosti stanovené v souladu se Studijním a zkušebním řádem VUT, které musí doktorand k úspěšnému ukončení studia splnit. Tyto povinnosti jsou časově rozvrženy do celého období studia, jsou bodově ohodnoceny a v pevně daných termínech probíhá kontrola jejich plnění. Průběžné bodové hodnocení všech aktivit doktoranda je vedeno v dokumentu „Celkové bodové hodnocení doktoranda“ a je součástí ISP. Při zahájení dalšího roku studia pak školitel do ISP zaznamená případné změny. Nejpozději do 15. 10. každého roku studia odevzdává doktorand vytištěný a podepsaný ISP na vědeckém oddělení fakulty ke kontrole a založení. Během prvních čtyř semestrů skládá doktorand zkoušky z povinných, povinně volitelných anebo volitelných předmětů pro splnění bodových limitů ze Studijní oblasti, a současně se intenzivně zabývá vlastním studiem a analýzou poznatků v oboru stanoveném tématem disertační práce a průběžným publikováním takto získaných poznatků a vlastních výsledků. V dalších semestrech se doktorand již více soustřeďuje na výzkum a vývoj, který souvisí s tématem disertační práce, na publikování výsledků své tvůrčí práce a na vlastní zpracování disertační práce. Do konce druhého roku studia skládá doktorand státní doktorskou zkoušku, kterou prokazuje široký rozhled a hluboké znalosti v oboru, souvisejícím s tématem disertační práce. K této zkoušce se musí přihlásit nejpozději do 30. dubna ve druhém roce svého studia. Státní doktorské zkoušce předchází zkouška z anglického jazyka. Ve třetím a čtvrtém roce svého studia provádí doktorand potřebnou výzkumnou činnost, publikuje dosažené výsledky a zpracovává svoji disertační práci. Součástí studijních povinností v doktorském studijním programu je absolvování části studia na zahraniční instituci nebo účast na mezinárodním tvůrčím projektu s výsledky publikovanými nebo prezentovanými v zahraničí nebo jiná forma přímé účasti studenta na mezinárodní spolupráci, což je nutné doložit nejpozději při odevzdání disertační práce. Doktorandi ve čtvrtém roce studia předkládají do konce zimního zkouškového období svému školiteli rozpracovanou disertační práci, který ji ohodnotí. Disertační práci doktorand odevzdává do konce 4. roku studia. Student prezenční formy doktorského studia je v průběhu studia povinen absolvovat pedagogickou praxi, tj. působit v procesu výuky. Zapojení doktoranda do pedagogické činnosti je součástí jeho vědecké přípravy. Pedagogickou praxí doktorand získává zkušenosti v předávání poznatků a zdokonaluje prezentační dovednosti. Skladbu pedagogických aktivit (cvičení, laboratorní cvičení, vedení projektů apod.) určí doktorandovi vedoucí daného ústavu po dohodě se školitelem. Povinnost pedagogické praxe se nevztahuje na doktorandy-samoplátce a na doktorandy v kombinované formě studia. Zapojení do výuky v rámci pedagogické praxe potvrdí po jejím splnění školitel v IS VUT.
Vypsaná témata doktorského studijního programu
Disertační práce je zaměřena na vývoj technik pro detekci různých materiálů (zejména na bázi N a Cl) s využitím nukleární kvadrupólové resonance. Aktuálně se tato metoda jeví jako velmi perspektivní pro oblast detekce a klasifikace výbušnin, léků a drog. Problematika buzení jader a následného snímání signálu rezonujících jader s možností přelaďování je relativně složitou úlohou jak z pohledu nároků na signálovou cestu, tak z hlediska konstrukce budicího obvodu. Vzhledem k malé úrovni signálu rezonujících jader a krátkým relaxacím je nutné vyřešit celou řadu technických problémů. Problematika je do značné míry mezioborová.
Školitel: Steinbauer Miloslav, doc. Ing., Ph.D.
Cílem disertační práce je zvýšení vědeckého poznání v oblasti nedestruktivní analýzy vnitřní struktury materiálu pomocí elektrické impedanční tomografie. Předpokládaným směrem dizertační práce je optimalizace metod rekonstrukce rozložení elektrické impedance, využití multispektrální šumové a impulzní analýzy, aplikace a optimalizace prvků umělé inteligence a strojového učení, zrychlení výpočtů s využitím paralelizace výpočtů. Návrh metod bude prováděn s ohledem na vybrané aplikace, např. průzkum zemin, stavu stavebních konstrukcí apod. ve spolupráci s konkrétními institucemi. Výzkumná činnost bude zahrnovat modelování prostředí a měřicího systému ekvivalentními obvody, simulaci, emulaci, měření na skutečném prostředí včetně vyhodnocení vlivu kmitočtu budicího signálu na kvalitu rekonstrukce elektrických vlastností analyzovaného prostředí.
Školitel: Mikulka Jan, doc. Ing., Ph.D.
Jednou z aktuálních oblastí výzkumu jsou práce na sofistikovaných nano-strukturách. Práce je zaměřena do oblasti návrhu, modelování a experimentů s laděnými nanostrukturami v oblasti f=10-500THz, dále pro frekvence odpovídající elektronovému svazku. Jsou zde tři cíle. První zaměření je z oboru numerického modelování struktur. Na základě reálných vlastností nanomateriálů vytvořit numerický model a analyzovat strukturu. Druhá oblast je zaměřena na návrh metod a metodik ověření výsledků pomocí experimentů, měření a ověření předpokladů očekávaných z teoretického modelu. Modelováním metodou konečných prvků, konečných objemů (například v programu ANSYS, ANSOFT, MAXWELL atd.) se navrhne model chování dynamiky hmoty. Třetí oblast výzkumu je zaměřena do oboru technologie. V tomto zaměření se očekává výzkum technologií pro realizaci navržených struktur a jejich realizovatelnost v experimentální části tématu. Výsledky budou sloužit pro výzkum speciálních laděných periodických struktur. Témata lze řešit odděleně, není podmínkou všechna pro jednoho uchazeče. Téma je součástí vypsaného grantu CZ.
Školitel: Fiala Pavel, prof. Ing., Ph.D.
Cílem disertační práce bude interdisciplinární porovnávání vzdušných iontů s dalšími souvisejícími veličinami a jejich vliv na lidské organismy. V oblasti studia atmosférické elektřiny lze hledat korelaci se zemětřesením a výzkumem jevů vznikajících při bouřkách. Dále se bude výzkum zaměřovat i na uzavřené prostory, kde je nutné dosáhnout maximální citlivosti při minimálním objemovém průtoku vzduchu. Zvláště pak na speleoterapeutické jeskyně, kde bude rozvíjena správná metodika měření vzdušných iontů a jejich pohyblivosti. V dnešní době aktuální znečištění atmosféry bude korelováno s koncentrací lehkých vzdušných iontů, Které mohou být použity jako možný indikátor chemického znečištění. Bude se zkoumat vliv cigaretového kouře a rostlin na vzdušné ionty. Obdobně bude probíhat výzkum i v experimentálním lese.
Školitel: Roubal Zdeněk, Ing., Ph.D.
Často je třeba měřit slabé magnetické pole užitečného signálu v prostředí s nežádoucím rušením od napájecí sítě, spínaných zdrojů. Typickým příkladem je metoda magnetické impedanční tomografie (MIT). Další možností je mapování magnetického pole pomocí dronu v městské zástavbě. Pomocí metody MIT lze nedestruktivně zrekonstruovat vodivost zkoumaného objektu a nalézt případné poruchy, trhliny. Existuje i mnoho jiných metod určení vlastnosti materiálu využívající přesné mapování magnetického pole nad zkoumaným vzorkem. Další využití je hledání min ať již metodami měření magnetických anomálií nebo metodou vířivých proudů. V rámci doktorské práce budou použity analogové i digitální metody vhodné pro potlačení šumu, rušení a dosažení co nejlepších výsledků pro následnou rekonstrukci či zpracování. U dronů je nutné vhodným způsobem vyřešit stabilizaci v prostoru.
Školitel: Drexler Petr, doc. Ing., Ph.D.
Práce je zaměřena na teoretické odvození numerických modelů založených na kvantově-mechanických modelech hmoty a v kombinaci se stochastickým, jak deterministickým, tak nedeterministickým přístupem určení neurčitosti formulovat pro obyčejné diferenciální rovnice jednoduchý deterministický numerický model nanoelementární části systému, periodického systému. Navazuje na výzkum modifikací takto vytvořeného modelu na bázi numerické metody konečných prvků, konečných objemů, hraničních prvků pro statické i dynamické modely formulované pomocí parciálních diferenciálních rovnic. Cílem práce je navrhnout numerický model jako silný nástroj pro analýzu a popis vlastností jak periodické, tak neperiodické struktury a její geometrie na atomární a subatomární úrovni, verifikace na jednoduchém ověřitelném příkladu, zkoumat parametry takto vzniklého numerického modelu a porovnat s požadavky kladenými na modely určené pro dynamiku elektrického výboje a vyhodnotit zadané parametry.
Téma se zabývá dvěma klíčovými oblastmi. První je zaměřena na pokračování výzkumu uceleného systému měřicích metod a metrologie pro nízkoúrovňová magnetická měření s respektem silně rušeného okolního prostředí v úzkém frekvenčním pásmu f= 0.1-30Hz. Je vhodné se zaměřit na metody dosahujících výsledky S/Š <0.05 a rekonstrukci signálu. S navrženými metodami se provádí vyhodnocení malých změn magnetických polí. Druhá oblast navazuje na výzkum změn chování člověka a celkově odezvy lidského organismu, jeho vlastnostmi a reakcí na změny magnetického pole. Jako nástroje se používají postupy jak deterministické, tak stochastické, s nejnovějším matematickým aparátem a nedestruktivními měřicími metodami.
Cílem disertační práce bude průzkum současných a návrh nových, případně optimalizace současných metod pro nízkoúrovňové měření elektrických veličin pro popis chování tekutin a to primárně při změně jejich skupenství (mrznutí), příp. stanovení přítomnosti a charakterizace parametrů prekurzorního nanofilmu vody a dalších sloučenin. Při řešení disertační práce se předpokládá spolupráce s Ústavem chemie Přírodovědecké fakulty Masarykovy univerzity. Bude navázáno na dosavadní výsledky měření elektrického potenciálu mrznoucí kapaliny, přičemž bude prohlubováno poznání v chování tekutin při velmi nízkých teplotách.
Školitel: Szabó Zoltán, Ing., Ph.D.
V procesu modelování se vyskytují neřešené problémy v oblasti rozsáhlých mnohaparametrických úloh s explicitním popisem minima parametrů. Přístupy řešení takovým modelů jsou známé. Při vhodném formulování a sestavení metody se stávají výkonnými nástroji při vědeckém přístupu k řešení základního i aplikovaného výzkumu. Cílem doktorského studia je popsat a formulovat přístupy a modely řešení rozsáhlých periodických systémů s mírou neperiodicity, na experimentech ověřit vlastnosti modelů. Cíleně provést testování na modelech nanomateriálových modelů, například nejen na strukturách grafenu, povrchových atomárních vrstev například s aplikací plazmatu.
V současnosti je možné očekávat zvýšení počtu nebezpečných událostí způsobených elektroinstalačními prvky v důsledku vyššího vytížení energetické sítě. Důvodem je rozšiřování elektromobility a využívání lokálních zdrojů energie, což má za následek obousměrný tok energie a vytížení elektroinstalace na hranici kapacity i v rozvodech bez pravidelné kontroly. Cílem disertační práce bude ve spolupráci s průmyslovými partnery a s bezpečnostním sborem ČR identifikovat typické problémy narušení bezpečnosti způsobené elektroinstalačními prvky a rozvody uvnitř i vně budov. Na základě reálných zkušeností budou pro tyto případy navrženy vlastní nebo optimalizovány současné metody numerického modelování pro rekonstrukci rozložení tepla, např. přístroje v rozváděčích při dlouhodobém přetížení nebo při poruše se zohledněním individuálních charakteristik prostředí. Přesnost numerických modelů bude verifikována porovnáním výsledků s měřením na fyzikálních modelech. Na základě verifikovaného modelu bude vyhotovena metodika pro uplatnění návrhu v praxi.
Školitel: Kadlec Radim, Ing., Ph.D.
Cílem disertační práce bude návrh nových a výrazné zlepšení stávajících metod umožňujících pro vzorky materiálu určit jeho materiálové vlastnosti. Zaměření bude na měření anizotropních magnetizačních charakteristik s potřebnou podporou numerických metod. Například nové kovové materiály v 3D tiskárnách vykazují výraznou anizotropii. Další oblastí bude měření materiálů s malou magnetickou susceptibilitou. Různé metody dávají odlišné výsledky, cílem tedy bude výsledky porovnat a sjednotit. Toto téma je zvláště důležité pro kvalitu obrazů v NMR tomografu u zubních implantátů. Zvláštní oblastí je měření magnetických kapalin. U silových metod bude nutná i optimalizace pomocí FEM.
Nelineární akustika je relativně moderní výzkumnou disciplínou. Zabývá se šířením akustických vln v nelineárním prostředí, modelováním parametrického akustického pole a souvisejícími aplikacemi. Jedním z problémů, které je potřeba v současné době řešit je analytický popis nelineárního prostředí, případně jeho numerické modelování. Dalším směrem v této oblasti je návrh nehomogenních lokálně periodických struktur, pomocí kterých jsme schopni zacílit akustické vlny do svazku, vytvářet nelineární prvky je např. akustická dioda apod. Aplikačním odvětvím této výzkumné oblasti pak může být např. bezkontaktní testování materiálů. V rámci disertační práce se bude student věnovat popisu a analýze amplitudově modulovaných akustických vln konečných amplitud a analýze parametricky buzených akustických polí. Cílem práce je dále prohloubení stavu poznání v problematice nelineárních akustických interakcí v tekutinách s využitím nehomogenních periodických struktur, metod zpracování vstupních signálu a modulace nosných vln.
Cíle disertační práce bude zvýšení míry poznání v oblasti zpracování jednorozměrných i vícerozměrných signálů (obrazů) moderními metodami umělé inteligence (hluboké učení). Půjde především o potlačení rušení, šumu a artefaktů vznikajících při jejich pořizování. Předpokládá se zpracování nízkoúrovňových signálů pořízených tomografickými metodami nebo signálů pořízených detekcí v pásmech ELF-THF.
Téma práce je zaměřeno na výzkum, popis, modelování a experimentálních ověření plazmové nanotechnologie umožňující modifikovat funkční vlastnosti povrchu elektrodového systému akumulátorů materiálů, včetně 3D mikro a nanoporézních struktur a to díky výborné konformalitě procesů. Nalezená technologie bude aplikovatelná i pro strukturování materiálů a proleptávání pórů a nanokanálků na rozhraní materiálu, výzkum se mimo jiné zaměří na možnosti tvorby vícevrstvých systémů. Cílem práce je navrhnout pomocí vyhodnocení numerických analýz nanostrukturu nových typů materiálů pro elektrody lithio-iontových akumulátory a navržené struktury experimentálně realizovat/ověřit pomocí kombinace kroků využívajících potenciál moderních nanotechnologií včetně plazmových procesů. Práce je součástí vypisovaného grantového projektu s plánovanou finanční podporou doktoranda.
Měřicí a diagnostické metody založené na využití vyzařovaného elektromagnetického (EM) pole a jeho interakce s testovanými objekty jsou v současné době dobře zvládnutou a široce využívanou technologií. Ovšem naprostá většina systémů založených na zmíněném přístupu používá koncept, kdy je generováno a vyhodnocováno EM pole s definovaným kmitočtem, resp. je tento kmitočet řízeně rozmítán. V tomto případě je nutno brát v úvahu možnost reaktančních vazeb měřeného a měřicího objektu v blízké oblasti, které mohou měření znehodnotit. Naopak, pokud by byly pro diagnostiku použity širokopásmové stochastické signály (šumové signály), bylo by možno tyto vazby potlačit. Téma studia je zaměřeno na výzkum využití konceptu diagnostiky materiálů a elektromagnetických struktur šumovým polem, především v radiofrekvenční a mikrovlnné oblasti, jeho rozvoj a experimentální ověření.
Cílem disertace je návrh numerické semi-analytické metody , která bude založena na Adomianově dekompoziční metodě a integrálních transformací, pro řešení počátečních problémů frakcionálních systémů diferenciálních rovnic s důrazem na analýzu frakcionálních přenosových funkcí a jejich impulzních charakteristik. Rovněž bude vyšetřována konvergenční analýza navržené metody.
Školitel: Šmarda Zdeněk, doc. RNDr., CSc.
Tělovýchova je oblast na pomezí medicíny a sportu nabízející velké množství aplikací v běžném životě. Cílem disertační práce je návrh a analýza matematického modelu, který by odpovídal vybranému dynamickému systému propojujícímu oblasti zdraví a pohybu člověka. Doktorská práce bude sestávat z teoretické a aplikační části a součástí práce budou simulace a analýza dat. Konkrétní zaměření práce bude zvoleno na základě zkušeností a preferencí kandidáta. Preferováni jsou kandidáti, kteří mají zkušenost s matematickými modely dynamických systémů.
Cílem disertační práce je zvýšení vědeckého poznání v oblasti moderních metod analýzy obrazů. V rámci řešení své dizertační práce bude doktorand úzce spolupracovat s Fakultní nemocnicí u sv. Anny (Neurochirurgická klinika). S ohledem na specifické vlastnosti obrazů magnetické rezonance a dalších zobrazovacích modalit budou rozvíjeny metody předzpracování, segmentace a klasifikace obrazů. Předpokládá se využití metod umělé inteligence a strojového učení pro diferenciaci tkání, standardizaci diagnostiky apod.
„Zlomkový počet“ je teorie o integrálech a derivacích libovolného (neceločíselného) řádu, která sjednocuje a zobecňuje pojem celočíselné derivace a n-násobné integrace. Tento zobecněný proces se nazývá „diferintegrace“. Systémy popsané diferenciálními rovnicemi zlomkového řádu se hojně vyskytují v aplikacích v elektrotechnice. Práce doktoranda by se měla zabývat teorií i aplikacemi a měla by posunout hranice poznání v obou oblastech. Konkrétní zaměření práce bude zvoleno na základě zkušeností a preferencí kandidáta. Preferováni jsou kandidáti, kteří už mají zkušenost se zlomkovými derivacemi a integrály.
Cílem práce bude řešit některé úlohy z teorie řízení o relativní a křivkové řiditelnosti pro systémy diskrétních rovnic se zpětnou vazbou. Předpokládá se, že budou získána kriteria řiditelnosti a budou konstruovány adekvátní algoritmy pro jejich řešení (včetně konstrukce řídících funkcí). Výchozí literaturou je kniha M. Sami Fadali a Antonio Visioli, Digital Control Engineering, Analysis and Design, Elsewier, 2013 a články: J. Diblík, Relative and trajectory controllability of linear discrete systems with constant coefficients and a single delay, IEEE Transactions on Automatic Control, (https://ieeexplore.ieee.org/document/8443094), 64 (2019), Issue 5, 2158-2165, a J. Diblík, K. Mencáková, A note on relative controllability of higher-order linear delayed discrete systems, IEEE Transactions on Automatic Control 65, No 12 (2020), 5472-5479, (https://ieeexplore.ieee.org/document/901308900. Během studia je plánován výjezd na Univerzitu Bialystok, Polsko, kde je podobná problematika studována.
Školitel: Diblík Josef, prof. RNDr., DrSc.
Cílem bude odvodit explicitní vzorce pro obecné řešení slabě zpožděných lineárních diferenciálních systémů a diskrétních systémů, ukázat jejich případnou redukci na lineární systémy obyčejných diferenciálních a diskrétních rovnic a dokázat výsledky o podmíněné stabilitě. K získání výsledků budou použity různé matematické nástroje, jedním z nich bude Laplaceova transformace. Prvotní literaturou je článek: D. Ya. Khusainov, D. B. Benditkis and J. Diblik, Weak delay in systems with an aftereffect, Functional Differential Equations, 9, 2002, No 3-4, 385-404, 404, J. Diblík, H. Halfarová, J. Šafařík, Formulas for the general solution of weakly delayed planar linear discrete systems with constant coefficients and their analysis, Applied Mathematics and Computation 358 (2019), 363-381, J. Diblík, H. Halfarová, J. Šafařík, Two-parameters formulas for general solution to planar weakly delayed linear discrete systems with multiple delays, equivalent non-delayed systems, and conditional stability, Applied Mathematics and Computation vol. 459, Art. ID 128270, pp. 1-14, 2023, M. Sami Fadali, A. Visioli, Digital Control Engineering, Analysis and Design,' Third Edition, Academic Press in an imprint of Elsevier, Elsevier, 2019 a nedávno publikované výsledky pro spojitý i diskrétní případ. Během studia je plánován výjezd na Univerzitu Bialystok, Polsko, kde je podobná problematika studována.