Detail projektu

VESCAA: Verifikovatelná a efektivní syntéza kontrolerů

Období řešení: 01.03.2023 — 31.12.2025

Zdroje financování

Grantová agentura České republiky - Standardní projekty

- částečně financující (2023-01-01 - 2025-12-31)

O projektu

Mnohé počítačové systémy mohou být chápány jako (semi-)autonomní agenti, kteří interagují se svým prostředím. Chování těchto agentů je řízeno pomocí tzv. kontrolerů, které musí nezbytně brát do úvahy různé formy neurčitosti pramenící zejména z nepredikovatelného chování prostředí a z nepřesnosti dat, které sbírají o svém stavu. Existuje několik přístupů pro automatizovaný návrh kontrolerů, ale jejich reálné nasazení je limitované buď omezenou škálovatelností nebo zárukami, které mohou poskytnout na bezpečnost výsledných kontrolerů: formální metody se typicky soustředí na bezpečnost zatímco metody strojové učení na škálovatelnost. Cílem tohoto projektu je vývoj teoretických základů a syntetizačních algoritmů, které dovolí redukovat tyto limity a tak zásadně zlepšit aplikovatelnost automatizovaného návrhu kontrolerů. Hlavní vizí projektu je adaptovat, dále vyvinout a synergicky integrovat nově vznikající paradigmata: induktivní syntézu, která vylepšuje škálovatelnost formálních metod a risk-aware učení, které vylepšuje garance bezpečnosti výsledných kontrolerů.

Popis anglicky
Many modern computing systems can be seen as (semi)-autonomous agents interacting with their environment. The agent's behaviour is determined by a controller that necessarily needs to deal with uncertainties including unpredictability of the environment and the imprecision of data gathered about its current state. There exists a multitude of approaches to automated controller design, however, they all tackle the safety-scalability gap: scalability limits the complexity of the problems that can be handled and safety ensures that agent operates in a safe and interpretable way. There are two principal approaches: formal methods prioritize safety and reinforcement learning prioritizes scalability. The project aims at developing theoretical foundation and synthesis algorithms that reduce this gap and thus improve their practical applicability. The key idea is to adapt, further develop and synergically integrate two emerging paradigms:  inductive synthesis improving the scalability of correct-by-construction design techniques and risk-aware learning improving the safety guarantees.

Klíčová slova
Řízení agentů v nejistém prostředí; automatizovaný návrh systémů; bezpečnost a škálovatelnost; induktivní syntéza; zpětnovazebné učení; risk-aware učení;

Klíčová slova anglicky
Decision making under uncertainty; controller design; safety and scalalbility; inductive synthesis; reinforcement learning, risk-aware learning;

Označení

GA23-06963S

Originální jazyk

čeština

Řešitelé

Češka Milan, doc. RNDr., Ph.D. - hlavní řešitel
Andriushchenko Roman, Ing. - spoluřešitel

Útvary

Ústav inteligentních systémů
- příjemce (24.03.2022 - 31.12.2025)
Masarykova Univerzita v Brně
- spolupříjemce (24.03.2022 - 31.12.2025)

Výsledky

ANDRIUSHCHENKO, R.; BARTOCCI, E.; ČEŠKA, M.; FRANCESCO, P.; SARAH, S. Deductive Controller Synthesis for Probabilistic Hyperproperties. In Quantitative Evaluation of SysTems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Cham: Springer Verlag, 2023. p. 288-306. ISBN: 978-3-031-43834-9.
Detail

ANDRIUSHCHENKO, R.; ALEXANDER, B.; ČEŠKA, M.; JUNGES, S.; KATOEN, J.; MACÁK, F. Search and Explore: Symbiotic Policy Synthesis in POMDPs. In Computer Aided Verification. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Cham: Springer Verlag, 2023. p. 113-135. ISBN: 978-3-031-37708-2.
Detail