Přístupnostní navigace
Přejít k obsahu
|
Přejít k hlavnímu menu
VUT
Menu
Život na VUT
Submenu
Atmosféra VUT
Prostory školy
Koleje
Stravování
Sport na VUT
Studentský život
Brno
Pro uchazeče
Submenu
Fakulty a programy
Jak se dostat na VUT
Dny otevřených dveří
Celoživotní vzdělávání
Zpracování osobních údajů uchazečů o studium
E-přihláška
Pro studenty
Submenu
Předměty
Studijní programy
Poplatky za studium
Studijní předpisy
Studium a stáže v zahraničí
Stipendia
Sociální bezpečí
Závěrečné práce
Knihovny
(externí odkaz)
Studium bez bariér
Uznání zahraničního vzdělání
Zpracování osobních údajů studentů
Podpora podnikání
Věda a výzkum
Submenu
Věda a výzkum na VUT
Mezinárodní vědecká rada
Evaluace
Centra výzkumu
Transfer znalostí
Open Science
Projekty
Projekty ze strukturálních fondů
Specifický výzkum
Publikace a výsledky VaV
Spolupráce
Submenu
Firemní spolupráce
Zahraniční spolupráce
Střední školy a VUT
Služby univerzity
Mezinárodní dohody
Univerzitní sítě
O univerzitě
Submenu
Profil univerzity
Udržitelná univerzita
Bezpečná univerzita
Podnikavá univerzita / ContriBUTe
Kalendář akcí
Absolventi
(externí odkaz)
Organizační struktura
Pracovní příležitosti
(externí odkaz)
Úřední deska
Sociální bezpečí
Podpora a rozvoj zaměstnanců a studujících / HR Award
Pro média
Kontakty
Ochrana osobních údajů
Vyznamenání
Fakulty
Fakulta stavební
Fakulta strojního inženýrství
Fakulta elektrotechniky a komunikačních technologií
Fakulta architektury
Fakulta chemická
Fakulta podnikatelská
Fakulta výtvarných umění
Fakulta informačních technologií
Vysokoškolské ústavy
Ústav soudního inženýrství
Centrum sportovních aktivit
Středoevropský technologický institut (CEITEC VUT)
Součásti
Centrum informačních služeb
Centrum vzdělávání a poradenství
Koleje a menzy
Nakladatelství VUTIUM
Ústřední knihovna
Rektorát
EN
Přihlásit se
Přihlásit se
Web VUT
Intraportál
Studis
Teacher
Elearning
Hledat
EN
Vyhledávání
Vyhledat
Zavřít
VUT
Věda a výzkum na VUT
Transfer znalostí
Transfer znalostí pro firmy
Příklady dobré praxe
Nápady a objevy
Nákladní auta i autobusy vybaví nanoradary a senzory, na jejich vývoji se podíleli odborníci z FIT VUT. Zvýší bezpečnost na silnicích
Nákladní auta i autobusy vybaví nanoradary a senzory, na jejich vývoji se podíleli odborníci z FIT VUT. Zvýší bezpečnost na silnicích
Řidiči nákladních aut mívají o bezprostředním okolí vozu špatný přehled – slepé úhly jim pokrývají nejen oblast před vozem a za ním, ale i po bočních stranách. Od července 2024 proto musí být podle nařízení
Evropské komise
součástí nákladních vozů a autobusů bezpečnostní senzory, které dokáží detekovat motorkáře, cyklisty či další zranitelné účastníky provozu. Zajistí to inovativní laserové senzory a nanoradary, na kterých spolupracovali odborníci z FIT VUT.
Dítě skryté za zadní části vozidla či cyklista jedoucí vedle odbočujícího kamionu – i takové nebezpečné situace pomohou řidičům odhalit
nové technologie lidarových senzorů a nanoradarů
. V rámci dvou projektů TAČR je vyvíjeli odborníci z FIT VUT společně s firmou Valeo, která se specializuje na výzkum, vývoj a výrobu asistenčních systémů a systémů pro autonomní jízdu.
„Z běžné kamery sice vidíme některé objekty na silnici, ale nezískáme informaci o jejich vzdálenosti či rychlosti pohybu. To umožní nový nanoradar, který vidí i za vozidla ve výhledu. Bližší informaci o geometrickém tvaru objektu pak řidiči nabídne laserový senzor LiDAR,“ vysvětluje základní pointu bezpečnostních senzorů Peter Chudý z FIT VUT, který se na vývoji obou technologií podílel.
Senzory LiDAR (Light Detection and Ranging) měří vzdálenost objektů pomocí odrazu laserového paprsku. Jsou to aktivní senzory vysílající do okolí energii a měří množství, které se vrátí. Zatímco první generace laserových senzorů disponovala čtyřmi vrstvami skenovacího paprsku, ty nejnovější jich mají více než stovku. Na silnici tak dokáží rozpoznat i drobné objekty a řidiče na ně upozornit. Do svých asistenčních systémů je zařazují i nejznámější automobilky včetně Audi, Mercedesu či Hondy.
Laserový senzor ScaLa NFL je ale unikátní i v samotné konstrukci: „Existují dva způsoby, jak sestrojit senzor – soustředit paprsek do geometricky úzkého prostoru, kdy dokáže změřit vzdálené objekty. Nebo celý prostor ozářit prostor najednou, a tak zmonitorovat širší scénu,“ popisuje vývojář Radek Maňásek ze společnosti Valeo.
Ukázka jednoho z případů prostorové konfigurace kolizní scény | Autor: Milan Prustoměrský
Data ze senzoru pak vytvoří tzv. point cloud– obrázek, kde každý bod reprezentuje vzdálenost od odraženého místa. O jeho interpretaci a přiřazení reprezentativního 3D objektu se pak postará speciální software na zpracování signálu. Využívá strojové učení a jeho vývoj si vzali na starost rovněž odborníci z FIT VUT.
Výhodou nového laserového skeneru je rychlá reakce na velmi blízké objekty. „U sensoru na principu scanneru, kdy se soustředí energie do malého prostoru, se v menším prostoru se často setkáváme s necitlivostí senzorů, které běžně měří až od metru a půl. Jsou tak vhodné v situacích, kdy se auto pohybuje vyšší rychlostí – například na dálnici. Náš nejnovější LiDAR však dokáže měřit vzdálenost už od 10 cm,“ dodává Maňásek, který na vývoji senzoru pracoval 3 roky.
LiDAR je tak schopen rozpoznat, zda za nastartovaným vozem nestojí v těsné blízkosti dítě či nějaká překážka. V případě umístění senzoru do autonomního vozu pak dokáže spustit samočinný rozjezd.
Senzorů je na autě umístěno několik, aby pokryly celé prostranství v okolí vozidla – především slepé úhly. Právě ty představují největší riziko u nákladních aut či kamionů, kdy řidič sedí velmi vysoko.
Druhým bezpečnostním prvkem, na kterém výzkumníci z FIT VUT spolupracovali, je nanoradar pro nákladní vozidla, který má oproti lidaru či kamerovým systémům několik výhod – není citlivý na počasí, a tak mu nevadí mlha, déšť či tma. Kromě vyšší odolnosti navíc dokáže okamžitě změřit i rychlost účastníka provozu.
„Umí fungovat i v dynamickém prostředí a hustém provozu. LiDAR či kamera funguje víceméně jako náš zrak a vidí pouze překážku, kdežto nanoradar vyšle elektromagnetickou vlnu, která se dostane pod auto či okolo něj a získá data i o zastíněném objektu,“ vyvětluje Michal Mandlík, který má ve Valeu na starosti vývoj radarových technologií.
Nanoradar tak skvěle doplňuje data sesbíraná z ostatních senzorů – LiDARů a předních kamer. „Radar v signálovém řetězci nahlíží na účastníky provozu seshora a ve 2D náhledu. Náklaďák identifikuje jako jeden obdelník s ochrannou zónou a vedle jedoucího cyklistu jako další. V případě, že se jejich trasy začnou křížit, řidič okamžitě dostane signál. LiDAR oproti tomu poskytuje 3D informace a je tak schopen identifikovat, zda je před autem odpadkový koš, člověk či malá překážka,“ dodává Mandlík.
Řidič tak může díky sofistikovanému systému získávat informace z několika různých senzorů. Zatímco lidarová technologie je skvělá pro rozjíždění vozu, nanoradary umožní perfektní monitoring bočních stran vozidla. „Pokročilé skládání informací z LiDARů, radarů a senzorů vidění pro zvýšení situačního povědomí řidiče o okolí vozidla vytvořili odborníci z FIT VUT. Senzorická fúze, výstupem které jsou potvrzené trajektorie sledovaných objektů, je jedním z příkladů transferu moderních aerokosmických technologií do automotive,“ dodává Peter Chudý.
Technologie vznikaly odděleně v rámci dvou projektů TAČR a je možné je na vůz aplikovat společně i odděleně. „Automobilový průmysl samozřejmě řeší náklady a kromě technických aspektů bude rozhodovat i cena výsledného vozu, proto je věnována velká pozornost na cenu výsledného senzoru. Obecně se dá říct, že cena laserového senzoru je násobně větší v porovnání s radarovým senzorem,“ podotýká.
„Jde o dvě naprosto odlišné technologie, které se však spojují do jedné uživatelské funkce a řidiči poskytují skvělý přehled o dění okolo automobilu,“ dodává. Bude pak na samotném automobilovém výrobci, jakou kombinací senzorů se automobil rozhodne opatřit – a to i v závislosti na to, zda půjde o vůz s vysokou mírou automatizace či zcela autonomní vozidlo.
(mar)
Projekt FW03010614 Nanoradar pro autonomní jízdu nákladních vozů a jeho industrializace 4.0
byl financován se státní podporou Technologické agentury ČR a Ministerstva průmyslu a obchodu ČR v rámci Programu TREND.
Projekt CK02000106 Laserový senzor pro autonomní jízdu nákladních vozů
byl financován se státní podporou Technologické agentury ČR a Ministerstva dopravy ČR v rámci Programu DOPRAVA 2020+.
Zobrazit galerii
Zobrazit galerii
Publikováno
25.03.2024 09:05
Odkaz
https://www.vut.cz/vav/transfer/firmy/reference/f38103/d253595
Odpovědnost:
Mgr. Marta Vaňková
Nahoru