Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BŘEZINA, T., KREJSA, J.
Originální název
Q-LEARNING USED FOR CONTROL OF AMB: REDUCED STATE DEFINITION
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
A great intention is lately focused on Reinforcement Learning (RL) methods. Previous work showed that stochastic strategy improved model free RL method known as Q-learning used on active magnetic bearing (AMB) model. So far the position, velocity and acceleration were used to describe the state of the system. This paper shows simplified version of controller which uses reduced state definition - position and velocity only. Furthermore the controlled initial conditions area and its development during learning are shown. Numerical experiments proved that simplified controller version is fully capable of AMB control.
Klíčová slova
Reinforcement Learning, Q-learning, Active Magnetic Bearing
Autoři
Rok RIV
2002
Vydáno
5. 6. 2002
Nakladatel
Brno University of Technology, Faculty of Mechanical Engineering
Místo
Brno
ISBN
80-214-2135-5
Kniha
Mendel 2002
Číslo edice
1
Strany od
347
Strany do
352
Strany počet
6
BibTex
@inproceedings{BUT10054, author="Tomáš {Březina} and Jiří {Krejsa}", title="Q-LEARNING USED FOR CONTROL OF AMB: REDUCED STATE DEFINITION", booktitle="Mendel 2002", year="2002", number="1", pages="6", publisher="Brno University of Technology, Faculty of Mechanical Engineering", address="Brno", isbn="80-214-2135-5" }