Detail publikace

Rician inverse Gaussian model of scattering in ultrasound contrast media

SLÁVIK, V. KOLÁŘ, R. HARABIŠ, V. JIŘÍK, R.

Originální název

Rician inverse Gaussian model of scattering in ultrasound contrast media

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

A statistical analysis of 1st and 2nd harmonic echoes backscattered from contrast media using Rician inverse Gaussian (RiIG) envelope model is described. Knowledge of statistics of the scattered signal may contribute to perfusion analysis. A range of ultrasound contrast agent (UCA) concentrations is examined. The RiIG distribution was fitted to image histograms, using Matlab Global optimization toolbox. Influence of simulated attenuation was also tested. Analysis of resulting RiIG distribution parameters shows that while its parameters alpha and beta do not follow any properties of the changing concentration, parameter delta shows logarithmic dependence on concentration in range of 3.125 - 50 mg/l. Taking into account simulated attenuation, we observed that the range and shape of the dependency remain stable, although the actual range of parameter delta decreases with increasing attenuation. This analysis contributes to our previous results, where the Nakagami distribution showed similar dependence of the shape parameter on UCA concentration in a smaller, partially overlapping, concentration range.

Klíčová slova

Nakagami Distribution, Histogram Fitting, Ultrasound Imaging, Contrast Agents

Autoři

SLÁVIK, V.; KOLÁŘ, R.; HARABIŠ, V.; JIŘÍK, R.

Rok RIV

2013

Vydáno

25. 7. 2013

ISBN

978-1-4673-5684-8

Kniha

2013 IEEE International Ultrasonics Symposium Proceedings

Strany od

318

Strany do

321

Strany počet

4

BibTex

@inproceedings{BUT100643,
  author="Vladimír {Slávik} and Radim {Kolář} and Vratislav {Harabiš} and Radovan {Jiřík}",
  title="Rician inverse Gaussian model of scattering in ultrasound contrast media",
  booktitle="2013 IEEE International Ultrasonics Symposium Proceedings",
  year="2013",
  pages="318--321",
  isbn="978-1-4673-5684-8"
}