Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KISELA, T.
Originální název
Power functions and essentials of fractional calculus on isolated time scales
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
This paper concerns with a recently suggested axiomatic definition of power functions on a general time scale and its consequences to fractional calculus. Besides a discussion of existence and uniqueness of such functions, we derive an efficient formula for the computation of power functions of rational orders on an arbitrary isolated time scale. It can be utilized in the introduction and evaluation of fractional sums and differences. We also deal with the Laplace transform of such fractional operators which, apart from solving of fractional difference equations, enables a more detailed comparison of our results with those in the relevant literature. Some illustrating examples (including special fractional initial value problems) are presented as well.
Klíčová slova
fractional calculus; power functions; time scales; convolution; Laplace transform
Autoři
Rok RIV
2013
Vydáno
23. 8. 2013
Nakladatel
Springer
ISSN
1687-1847
Periodikum
Advances in Difference Equations
Ročník
Číslo
8
Stát
Spojené státy americké
Strany od
1
Strany do
18
Strany počet
URL
https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-259
Plný text v Digitální knihovně
http://hdl.handle.net/11012/137442
BibTex
@article{BUT101023, author="Tomáš {Kisela}", title="Power functions and essentials of fractional calculus on isolated time scales", journal="Advances in Difference Equations", year="2013", volume="2013", number="8", pages="1--18", doi="10.1186/1687-1847-2013-259", issn="1687-1847", url="https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-259" }