Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MIKULKA, J. DVOŘÁK, P. BARTUŠEK, K.
Originální název
Support Vector Machines in MR Images Segmentation
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The problem most frequently encountered in the practical processing of medical images consists in the lack of instruments enabling machine evaluation of the images. A typical example of this situation is perfusion analysis of brain tumor types. The first and very significant step lies in the segmentation of individual parts of the brain tumor; after segmentation, the rate of penetration by the applied contrast agent is observed in the parts. The common method, in which a high error rate has to be considered, is to mark these tumor portions manually. The quality of brain tissue segmentation exerts significant influence on the quality of evaluation of perfusion parameters; consequently, the tumor type recognition is also influenced. The authors describe classification methods enabling the segmentation of images acquired via magnetic resonance tomography. During the edema segmentation, we obtained the following data: sensitivity 0.78+-0.09, specificity 1.00+-0.00, error rate 0.45+-0.24 %, surface overlap 69.36+-12.04 %, accuracy 99.55+-0.24 %, and surface difference -7.80+-9.13 %.
Klíčová slova
Perfusion analysis, brain tumor segmentation, data classification, support vector machines, multi-parametric segmentation
Autoři
MIKULKA, J.; DVOŘÁK, P.; BARTUŠEK, K.
Rok RIV
2013
Vydáno
27. 5. 2013
ISBN
9788096967254
Kniha
Measurement 2013
Strany od
157
Strany do
160
Strany počet
4
BibTex
@inproceedings{BUT101099, author="Jan {Mikulka} and Pavel {Dvořák} and Karel {Bartušek}", title="Support Vector Machines in MR Images Segmentation", booktitle="Measurement 2013", year="2013", pages="157--160", isbn="9788096967254" }