Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MEDUNA, A. ZEMEK, P.
Originální název
Generalized One-Sided Forbidding Grammars
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
In generalized one-sided forbidding grammars (GOFGs), each context-free rule has associated a finite set of forbidding strings, and the set of rules is divided into the sets of left and right forbidding rules. A left forbidding rule can rewrite a nonterminal if each of its forbidding strings is absent to the left of the rewritten symbol. A right forbidding rule is applied analogically. Apart from this, they work like any generalized forbidding grammar. This paper proves the following three results. (1) GOFGs where each forbidding string consists of at most two symbols characterize the family of recursively enumerable languages. (2) GOFGs where the rules in one of the two sets of rules contain only ordinary context-free rules without any forbidding strings characterize the family of context-free languages. (3) GOFGs with the set of left forbidding rules coinciding with the set of right forbidding rules characterize the family of context-free languages.
Klíčová slova
formal languages, regulated rewriting, generalized one-sided forbidding grammars, language families, generative power
Autoři
MEDUNA, A.; ZEMEK, P.
Rok RIV
2013
Vydáno
1. 1. 2013
ISSN
0020-7160
Periodikum
International Journal of Computer Mathematics
Ročník
90
Číslo
2
Stát
Spojené království Velké Británie a Severního Irska
Strany od
172
Strany do
182
Strany počet
11
URL
http://www.tandfonline.com/doi/abs/10.1080/00207160.2012.723703
BibTex
@article{BUT103403, author="Alexandr {Meduna} and Petr {Zemek}", title="Generalized One-Sided Forbidding Grammars", journal="International Journal of Computer Mathematics", year="2013", volume="90", number="2", pages="172--182", doi="10.1080/00207160.2012.723703", issn="0020-7160", url="http://www.tandfonline.com/doi/abs/10.1080/00207160.2012.723703" }