Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HLOSTA, M. STRÍŽ, R. KUPČÍK, J. ZENDULKA, J. HRUŠKA, T.
Originální název
Constrained Classification of Large Imbalanced Data by Logistic Regression and Genetic Algorithm
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
Imbalance in data classification is a frequently discussed problem that is not well handled by classical classification techniques. The problem we tackled was to learn binary classification model from large data with accuracy constraint for the minority class. We propose a new meta-learning method that creates initial models using cost-sensitive learning by logistic regression and uses these models as initial chromosomes for genetic algorithm. The method has been successfully tested on a large real-world data set from our internet security research. Experiments prove that our method always leads to better results than usage of logistic regression or genetic algorithm alone. Moreover, this method produces easily understandable classification model.
Klíčová slova
Imbalanced data, classification, genetic algorithm, logistic regression
Autoři
HLOSTA, M.; STRÍŽ, R.; KUPČÍK, J.; ZENDULKA, J.; HRUŠKA, T.
Rok RIV
2013
Vydáno
18. 5. 2013
ISSN
2010-3700
Periodikum
International Journal of Machine Learning and Computing
Ročník
Číslo
3
Stát
Singapurská republika
Strany od
214
Strany do
218
Strany počet
5
URL
http://www.ijmlc.org/index.php?m=content&c=index&a=show&catid=36&id=304
BibTex
@article{BUT103468, author="Martin {Hlosta} and Rostislav {Stríž} and Jan {Kupčík} and Jaroslav {Zendulka} and Tomáš {Hruška}", title="Constrained Classification of Large Imbalanced Data by Logistic Regression and Genetic Algorithm", journal="International Journal of Machine Learning and Computing", year="2013", volume="2013", number="3", pages="214--218", issn="2010-3700", url="http://www.ijmlc.org/index.php?m=content&c=index&a=show&catid=36&id=304" }