Detail publikace
Feature And Score Level Combination Of Subspace Gaussians In LVCSR Task
MOTLÍČEK, P. POVEY, D. KARAFIÁT, M.
Originální název
Feature And Score Level Combination Of Subspace Gaussians In LVCSR Task
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
We have demonstrated that the SGMM framework is an efficient approachin the LVCSR task. Overall evaluations of SGMMs exploitingpowerful but complex PLP-BN features yield similar results asthose obtained by conventional HMM/GMMs. Nevertheless, the totalnumber of SGMM parameters is about 3 times less than in theHMM/GMM framework. Evaluation results also indicate differentproperties of the examined acoustic modeling techniques. AlthoughSGMMs consistently outperform HMM/GMMs when built over individualfeatures, HMM/GMMs can benefit much more from thefeature-level combination than SGMMs. Nevertheless based on ananalysis measuring complementarity of individual recognition systems,we show that SGMM-based recognizers produce heterogeneousoutputs (scores) and thus subsequent score-level combinationcan bring additional improvement.
Klíčová slova
Automatic Speech Recognition, Discriminativefeatures, System combination
Autoři
MOTLÍČEK, P.; POVEY, D.; KARAFIÁT, M.
Rok RIV
2013
Vydáno
27. 5. 2013
Nakladatel
IEEE Signal Processing Society
Místo
Vancouver
ISBN
978-1-4799-0355-9
Kniha
Proceedings of ICASSP 2013
Strany od
7604
Strany do
7608
Strany počet
5
URL
BibTex
@inproceedings{BUT103519,
author="Petr {Motlíček} and Daniel {Povey} and Martin {Karafiát}",
title="Feature And Score Level Combination Of Subspace Gaussians In LVCSR Task",
booktitle="Proceedings of ICASSP 2013",
year="2013",
pages="7604--7608",
publisher="IEEE Signal Processing Society",
address="Vancouver",
isbn="978-1-4799-0355-9",
url="http://www.fit.vutbr.cz/research/groups/speech/publi/2013/motlicek_icassp2013_0007604.pdf"
}