Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
MOTLÍČEK, P. POVEY, D. KARAFIÁT, M.
Originální název
Feature And Score Level Combination Of Subspace Gaussians In LVCSR Task
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
We have demonstrated that the SGMM framework is an efficient approach in the LVCSR task. Overall evaluations of SGMMs exploiting powerful but complex PLP-BN features yield similar results as those obtained by conventional HMM/GMMs. Nevertheless, the total number of SGMM parameters is about 3 times less than in the HMM/GMM framework. Evaluation results also indicate different properties of the examined acoustic modeling techniques. Although SGMMs consistently outperform HMM/GMMs when built over individual features, HMM/GMMs can benefit much more from the feature-level combination than SGMMs. Nevertheless based on an analysis measuring complementarity of individual recognition systems, we show that SGMM-based recognizers produce heterogeneous outputs (scores) and thus subsequent score-level combination can bring additional improvement.
Klíčová slova
Automatic Speech Recognition, Discriminative features, System combination
Autoři
MOTLÍČEK, P.; POVEY, D.; KARAFIÁT, M.
Rok RIV
2013
Vydáno
27. 5. 2013
Nakladatel
IEEE Signal Processing Society
Místo
Vancouver
ISBN
978-1-4799-0355-9
Kniha
Proceedings of ICASSP 2013
Strany od
7604
Strany do
7608
Strany počet
5
URL
http://www.fit.vutbr.cz/research/groups/speech/publi/2013/motlicek_icassp2013_0007604.pdf
BibTex
@inproceedings{BUT103519, author="Petr {Motlíček} and Daniel {Povey} and Martin {Karafiát}", title="Feature And Score Level Combination Of Subspace Gaussians In LVCSR Task", booktitle="Proceedings of ICASSP 2013", year="2013", pages="7604--7608", publisher="IEEE Signal Processing Society", address="Vancouver", isbn="978-1-4799-0355-9", url="http://www.fit.vutbr.cz/research/groups/speech/publi/2013/motlicek_icassp2013_0007604.pdf" }