Detail publikace

Generator of Synthetic Datasets for Hierarchical Sequential Pattern Mining Evaluation

ŠEBEK, M. ZENDULKA, J.

Originální název

Generator of Synthetic Datasets for Hierarchical Sequential Pattern Mining Evaluation

Typ

článek ve sborníku mimo WoS a Scopus

Jazyk

angličtina

Originální abstrakt

Evaluation is an important part of algorithm design. Algorithms are typically evaluated on real-world and synthetic datasets. Real-world datasets are appropriate for evaluation of algorithm properties in practice but it is difficult to change the dataset to have some particular statistics, e.g. number of input items. In contrast, generated synthetic dataset simply allows changing any of statistic property of the dataset with keeping all other statistic properties. In the paper, we present a procedure for generation of sequence databases with taxonomies for an evaluation of hierarchical sequential pattern mining algorithms.

Klíčová slova

Sequence pattern mining, synthetic dataset generators, taxonomy

Autoři

ŠEBEK, M.; ZENDULKA, J.

Rok RIV

2013

Vydáno

5. 11. 2013

Nakladatel

The University of Technology Košice

Místo

Košice

ISBN

978-80-8143-127-2

Kniha

Proceedings of the Twelfth International Conference on Informatics 2013

Strany od

289

Strany do

292

Strany počet

4

URL

BibTex

@inproceedings{BUT103555,
  author="Michal {Šebek} and Jaroslav {Zendulka}",
  title="Generator of Synthetic Datasets for Hierarchical Sequential Pattern Mining Evaluation",
  booktitle="Proceedings of the Twelfth International Conference on Informatics 2013",
  year="2013",
  pages="289--292",
  publisher="The University of Technology Košice",
  address="Košice",
  isbn="978-80-8143-127-2",
  url="https://www.fit.vut.cz/research/publication/10435/"
}