Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HLOSTA, M. STRÍŽ, R. ZENDULKA, J. HRUŠKA, T.
Originální název
PSO-based Constrained Imbalanced Data Classification
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
The paper deals with classification of highly imbalanced data with accuracy constraints for the minority class. We solve this problem by our proposed meta-learning method that uses cost-sensitive logistic regression to generate initial candidate models. These models can be used as an initial solutions for various optimization algorithms. This paper is aimed for using Particle Swarm Optimization (PSO) to handle the constrained imbalanced classification problem. Experiments, comparing with Genetic Algorithm (GA), show that the swarm intelligence approach is suitable for this problem and outperforms GA.
Klíčová slova
Data mining, imbalance classification, constraints, PSO, Genetic Algorithm
Autoři
HLOSTA, M.; STRÍŽ, R.; ZENDULKA, J.; HRUŠKA, T.
Rok RIV
2013
Vydáno
5. 11. 2013
Nakladatel
The University of Technology Košice
Místo
Spišská Nová Ves
ISBN
978-80-8143-127-2
Kniha
Proceedings of the Twelth International Conference on Informatics INFORMATICS'2013
Strany od
234
Strany do
239
Strany počet
6
URL
https://www.fit.vut.cz/research/publication/10438/
BibTex
@inproceedings{BUT103558, author="Martin {Hlosta} and Rostislav {Stríž} and Jaroslav {Zendulka} and Tomáš {Hruška}", title="PSO-based Constrained Imbalanced Data Classification", booktitle="Proceedings of the Twelth International Conference on Informatics INFORMATICS'2013", year="2013", pages="234--239", publisher="The University of Technology Košice", address="Spišská Nová Ves", isbn="978-80-8143-127-2", url="https://www.fit.vut.cz/research/publication/10438/" }